In: Statistics and Probability
The method of tree ring dating gave the following years A.D. for an archaeological excavation site. Assume that the population of x values has an approximately normal distribution. 1299 1208 1215 1208 1268 1316 1275 1317 1275
(a) Use a calculator with mean and standard deviation keys to find the sample mean year x and sample standard deviation s. (Round your answers to the nearest whole number.)
x = A.D
. s = yr
(b) Find a 90% confidence interval for the mean of all tree ring dates from this archaeological site. (Round your answers to the nearest whole number.)
lower limit A.D.
upper limit A.D.
Solution:
x | x2 |
1299 | 1687401 |
1208 | 1459264 |
1215 | 1476225 |
1208 | 1459264 |
1268 | 1607824 |
1316 | 1731856 |
1275 | 1625625 |
1317 | 1734489 |
1275 | 1625625 |
∑x=11381 | ∑x2=14407573 |
a ) Mean ˉx=∑xn
=1299+1208+1215+1208+1268+1316+1275+1317+12759
=113819
=1264.5556
Sample Standard deviation S=√∑x2-(∑x)2nn-1
=√14407573-(11381)298
=√14407573-14391906.77788
=√15666.22228
=√1958.2778
=44.2524
b ) Degrees of freedom = df = n - 1 = 9 - 1 = 824
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
t /2,df = t0.05,8 =1.859
Margin of error = E = t/2,df * (s /n)
= 1.859 * (44 / 9)
= 27
Margin of error = 27
The 90% confidence interval estimate of the population mean is,
- E < < + E
1265 - 27 < < 1265+ 27
1238 < < 1292
lower limit A.D. =1238
upper limit A.D.=1292