In: Math
| 
 Problem Set 2: Linear Regression Analysis Research Scenario: A social psychologist is interested in whether the number of days spent in a refugee camp predicts trauma levels in recently resettled refugees. He interviews 17 refugees to determine how many days they spent in a refugee camp before being resettled, then administers the Harvard Trauma Questionnaire Part IV (HTQ Part 4), where a higher score indicates higher levels of trauma (Mollica et al., 1992). He compiles the information in the table below. Using this table, enter the data into a new SPSS data file and run a linear regression analysis to test whether days in a refugee camp predict HTQ-4 scores. Create a scatterplot with a regression line to show the relationship between the variables.  | 
| 
 Days Spent in Refugee Camp  | 
 HTQ Part 4 Score  | 
| 
 12  | 
 0.4  | 
| 
 73  | 
 1.1  | 
| 
 60  | 
 0.9  | 
| 
 105  | 
 2.3  | 
| 
 98  | 
 1.7  | 
| 
 76  | 
 0.3  | 
| 
 89  | 
 0.7  | 
| 
 173  | 
 2.6  | 
| 
 189  | 
 3.1  | 
| 
 203  | 
 3.0  | 
| 
 138  | 
 1.9  | 
| 
 215  | 
 2.5  | 
| 
 71  | 
 0.7  | 
| 
 67  | 
 1.2  | 
| 
 63  | 
 1.8  | 
| 
 184  | 
 2.9  | 
| 
 63  | 
 0.6  | 

SPSS output is
Descriptive Statistics
Mean Std. Deviation N
Score 1.629 .9674 17
Refugee 110.53 60.810 17
Correlations
Score Refugee
Pearson Correlation Score 1.000 .882
Refugee .882 1.000
Sig. (1-tailed) Score . .000
Refugee .000 .
N Score 17 17
Refugee 17 17
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | 
| 1 | 0.881697 | 0.77739 | 0.76255 | 0.471427 | 
| Model | Sum of Squares | df | Mean Square | F | Sig. | |
| 1 | Regression | 11.64165 | 1 | 11.64165 | 52.38254 | 2.89E-06 | 
| Residual | 3.333644 | 15 | 0.222243 | |||
| Total | 14.97529 | 16 | ||||
| Model | B | Std.Error | Beta | t | Sig. | |
| 1 | (Constant) | 0.079 | 0.243 | 0.325 | 0.749 | |
| Refugee | 0.014 | 0.002 | 0.015 | 7.238 | 0.000 | |
| a. Dependent Variable: Score | ||||||
As we see that days in a refugee camp has a significinat impact of HTQ-4 scores