Question

In: Other

An incompressible liquid flows through a straight horizontal pipe. Friction of the fluid within the pipe...

An incompressible liquid flows through a straight horizontal pipe. Friction of the fluid within the pipe causes a small amount of heat to be transferred from the fluid; to compensate, flow work must be done on the fluid to move it through the system (so W(dot)fl is greater than zero.

a) How are V(dot)in and V(dot)out related, where V(dot) is the volumetric flow rate of the liquid? (Remember, fluid is incompressible)

b) How must the pressures of Pin and Pout be related?

Any help is appreciated, I don't understand this at all.

Solutions

Expert Solution


Related Solutions

An incompressible fluid flows from a wide piece of cylindrical pipe at point A to a...
An incompressible fluid flows from a wide piece of cylindrical pipe at point A to a more narrow piece of pipe at point B as shown. How does the pressure at point A compare to that at point B? Thank you!!
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is...
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is 2.00 cm in diameter and is at the top of the pipe. The pressure of the fluid in the wide section at the top is 200 kPa. The velocity of the fluid in the wide section is 4.00 m/s. The narrow section is located 4.00 m below the wide section. What is the diameter of the narrow section for the pressure of the fluid...
Derive an expression for the shear stress at the pipe wall when an incompressible fluid flows...
Derive an expression for the shear stress at the pipe wall when an incompressible fluid flows through a pipe under pressure. Use dimensional analysis with the following significant parameters: pipe diameter, flow velocity, viscosity and density of the fluid.
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is laminar. What is the velocity at the inner wall of the pipe? How do you know? The pipe has diameter a. The velocity profile in the pipe is vz = b ­– c r2. Please express c in terms of a and b. (You are applying a boundary condition to solve this problem.) Where in the pipe is the velocity a maximum? Please express...
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as...
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as in the figure below. In the first section, the cross-sectional area is 10.0 cm2, the flow speed is 281 cm/s, and the pressure is 1.20  105 Pa. In the second section, the cross-sectional area is 4.50 cm2. The flow within a horizontal tube is depicted by five lines. The tube extends from left to right, with the left end wider than the right end. The...
A 8.0-cm-diameter horizontal pipe gradually narrows to 5.0 cm . When water flows through this pipe...
A 8.0-cm-diameter horizontal pipe gradually narrows to 5.0 cm . When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 31.0 kPa and 25.0 kPa , respectively. What is the volume rate of flow?
A liquid at 300 F flows through a 3-in. steel pipe (schedule 40) covered with a...
A liquid at 300 F flows through a 3-in. steel pipe (schedule 40) covered with a ½ in. thickness of asbestos insulation. The ambient temperature is 80 F. The inside surface film coefficient is 40 Btu/hr-sq ft-F, and the outside surface film coefficient is 4.0 Btu/hr-sq ft-F. The thermal conductivities of steel and asbestos can be taken as 25 and 0.11 Btu/hr-ft-F respectively. What's the heat loss per foot length of the pipe?
A liquid at 300 F flows through a 3-in. steel pipe (schedule 40) covered with a...
A liquid at 300 F flows through a 3-in. steel pipe (schedule 40) covered with a ½ in. thickness of asbestos insulation. The ambient temperature is 80 F. The inside surface film coefficient is 40 Btu/hr-sq ft-F, and the outside surface film coefficient is 4.0 Btu/hr-sq ft-F. The thermal conductivities of steel and asbestos can be taken as 25 and 0.11 Btu/hr-ft-F respectively. What's the heat loss per foot length of the pipe?
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.09 m/s and the pipe diameter is 10.9 cm. At location 2 the pipe diameter is 14.3 cm. At location 1 the pipe is 9.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the...
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the first segment at a speed of 9.0 m/s . What is the speed in the second segment? What is the speed in the third segment? What is the volume flow rate through the pipe? for the love of god please give me the right answer. everyone has given me the wrong answers so far and i'm pissed off.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT