Question

In: Math

The lifetime of an electronic component has a Weibull distribution with parameters α​=0.60 and β​=2. Compute...

The lifetime of an electronic component has a Weibull distribution with parameters α​=0.60 and β​=2. Compute the probability the component fails before the expiration of a 4 year warranty.

The maximum flood​ levels, in millions of cubic feet per​ second, for a particular U.S. river have a Weibull distribution with α=5/3 and β=3/2. Find the probability that the maximum flood level for next year will exceed 0.7 million cubic feet per second.

Solutions

Expert Solution

The pdf of the Weibull distribution is given by:

And the CDF of Weibull distribution is:

(A)

Let the random variable denote the lifetime of electronic component.

follows the Weibull distribution with parameters

Therefore, the probability that the electronic component fails before the expiry of warranty period of 4 years is:

(B)

Let the random variable denote the maximum flood levels million cubic feet per second.

follows the Weibull distribution with parameters

Therefore, the probability that the maximum flood level for next year will exceed 0.7 million cubic feet per second is:


Related Solutions

The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint:...
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint: start with a confidence interval for μ) f(x)=αβXβ-1 exp(-αXβ) a.      Derive 92% large sample confidence interval for α. b.      Find the maximum likelihood estimator of α.
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint:...
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint: start with confidence interval for μ) f(x)=αβXβ-1 exp(-αXβ) a.      Derive 98% large sample confidence interval for α. b.      Find maximum likelihood estimator of α.
Suppose a car radiator useful lifetime has Weibull distribution with β = 1.5 and the mean...
Suppose a car radiator useful lifetime has Weibull distribution with β = 1.5 and the mean lifetime of 150,000 miles. John has just bought a used car with 180,000 miles and original radiator which is still good. What is the probability that it’s going to last at least 20,000 miles more before needing replacement?
Assume the life of a roller bearing follows a Weibull distribution with parameters β=2 and δ=7,500...
Assume the life of a roller bearing follows a Weibull distribution with parameters β=2 and δ=7,500 hours. Determine the probability that the bearing will last at least 8000 hours. Verify your answer using R. Determine the expect value and the variance.
Assume the life of a roller bearing follows a Weibull distribution with parameters β=2 and δ=7,500...
Assume the life of a roller bearing follows a Weibull distribution with parameters β=2 and δ=7,500 hours. Determine the probability that the bearing will last at least 8000 hours. Determine the expect value and the variance.
The usable lifetime of a particular electronic component is known to follow an exponential distribution with...
The usable lifetime of a particular electronic component is known to follow an exponential distribution with a mean of 6.1 years. Let X = the usable lifetime of a randomly selected component. (a) The proportion of these components that have a usable lifetime between 5.9 and 8.1 years is __. (b) The probability that a randomly selected component will have a usable life more than 7.5 years is __. (c) The variance of X is __.
The lifespan of a system component follows a Gamma distribution with β (unknown) and α=1. (hint:...
The lifespan of a system component follows a Gamma distribution with β (unknown) and α=1. (hint: start with confidence interval for μ) f(x)=(1/βα Γ(α)) Xα-1 e-X/β a.      Derive 98% large sample confidence interval for β. b.      Find maximum likelihood estimator of β. a) 98% large sample confidence interval fo β is b) MLE for β is
Suppose X follows a Gamma distribution with parameters α, β, and the following density function f(x)=...
Suppose X follows a Gamma distribution with parameters α, β, and the following density function f(x)= [x^(α−1)e^(−x/ β)]/ Γ(α)β^α . Find α and β so that E(X)= Var(X)=1. Also find the median for the random variable, X.
5. The lifetime of a car battery can be modeled as a Weibull distribution with a=0.9....
5. The lifetime of a car battery can be modeled as a Weibull distribution with a=0.9. a) If the probability that a battery works longer than 10 years is 0.45, find the value of the parameter λ? b) What is the time to which 75% of the battery work?
If sec(α) = − 13 5 where π 2 < α < π and tan(β) =...
If sec(α) = − 13 5 where π 2 < α < π and tan(β) = 24 7 where π < β < 3π 2 , find the exact values of the following. (a)    csc(α − β) (b)    sec(α + β) (c)    cot(α + β)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT