Question

In: Statistics and Probability

Suppose X follows a Gamma distribution with parameters α, β, and the following density function f(x)=...

Suppose X follows a Gamma distribution with parameters α, β, and the following density function f(x)= [x^(α−1)e^(−x/ β)]/ Γ(α)β^α . Find α and β so that E(X)= Var(X)=1. Also find the median for the random variable, X.

Solutions

Expert Solution

Solution:-

Let X~Gamma (α, β) distribution

Therefore, pdf of X is given as,

Mean and variance of this distribution is,

Therefore, consider ratio,

But we have given that,

So, from above ratio,

Now use equation (i) in E(X)

Therefore,

#Find median of the distribution:-

-----> Now, first put value of (α=1,β=1) in given pdf

Therefore, the pdf of X is written as,

That is,

Now, by definition of Median, Median is given by

Therefore,

Taking natural logarithm { } on both sides,we get

Result:-


Related Solutions

The lifespan of a system component follows a Gamma distribution with β (unknown) and α=1. (hint:...
The lifespan of a system component follows a Gamma distribution with β (unknown) and α=1. (hint: start with confidence interval for μ) f(x)=(1/βα Γ(α)) Xα-1 e-X/β a.      Derive 98% large sample confidence interval for β. b.      Find maximum likelihood estimator of β. a) 98% large sample confidence interval fo β is b) MLE for β is
Suppose that the distribution of wind velocity, X, is described by the probability density function f(x)...
Suppose that the distribution of wind velocity, X, is described by the probability density function f(x) = (x/σ^2)e^-(x^2/ 2(σ^2)) , x ≥ 0. Suppose that for the distribution of wind velocity in Newcastle, measured in km/hr, σ^2 = 100. (a) In task 1, you showed that the quantile function for this distribution is given by: Q(p) = σ (−2 ln(1 − p))^(1/2), 0 ≤ p < 1 Use this quantile function to generate 100,000 random values from this distribution (when...
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
Suppose that Y has the gamma distribution with parameters a ( shape ) = 2 and...
Suppose that Y has the gamma distribution with parameters a ( shape ) = 2 and b (scale) = 2. Use R to plot the probability density, and determine the shape or skewness for the gamma distribution. Use R code a. )Skew to the left b.) Skew to the right c.) symmetrical d.) bell curved
The lifetime of an electronic component has a Weibull distribution with parameters α​=0.60 and β​=2. Compute...
The lifetime of an electronic component has a Weibull distribution with parameters α​=0.60 and β​=2. Compute the probability the component fails before the expiration of a 4 year warranty. The maximum flood​ levels, in millions of cubic feet per​ second, for a particular U.S. river have a Weibull distribution with α=5/3 and β=3/2. Find the probability that the maximum flood level for next year will exceed 0.7 million cubic feet per second.
Suppose that X and Y have the following joint probability density function. f (x, y) =...
Suppose that X and Y have the following joint probability density function. f (x, y) = (3/394)*y, 0 < x < 8, y > 0, x − 3 < y < x + 3 (a)   Find E(XY). (b)   Find the covariance between X and Y.
Consider a distribution with the density function f(x) = x^2/3 for −1 ≤ x ≤ 2....
Consider a distribution with the density function f(x) = x^2/3 for −1 ≤ x ≤ 2. (a) Randomly pick a sample of size 20 from this distribution, find the probability that there are 2 to 4 (inclusive) of these taking negative values. (b) Randomly pick an observation X from this distribution, find the probability that it is between 1.2 and 1.4, i.e., P (1.2 < X < 1.4). (c) Randomly pick a sample of size 40 from this distribution, and...
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint:...
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint: start with a confidence interval for μ) f(x)=αβXβ-1 exp(-αXβ) a.      Derive 92% large sample confidence interval for α. b.      Find the maximum likelihood estimator of α.
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint:...
The lifespan of a system component follows a Weibull distribution with α (unknown) and β=1. (hint: start with confidence interval for μ) f(x)=αβXβ-1 exp(-αXβ) a.      Derive 98% large sample confidence interval for α. b.      Find maximum likelihood estimator of α.
Suppose that the joint probability density function of ˜ (X, Y) is given by:´ f X,Y...
Suppose that the joint probability density function of ˜ (X, Y) is given by:´ f X,Y (x,y) = 4x/y3 I(0.1)(x), I (1, ∞)(y). Calculate a) P(1/2 < X < 3/4, 0 < Y ≤ 1/3). b) P(Y > 5). c) P(Y > X).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT