Question

In: Chemistry

When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected...

When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected with a maximum kinetic energy of 1.10x10-19 J. Calculate:
    
(a) the wavelength of this light: Answer m

b) the binding energy of electrons to sodium metal: Answer J
c) the longest wavelength of light that will eject electrons: Answerm

In this question please use the following values for the fundamental constants:
Planck's constant h=6.626x10-34 Js
Speed of light c=2.998x108m/s

Give your answer to 3 significant figures. Do not enter units!
For large or small numbers, use scientific notation, for example 1.23E-4


Solutions

Expert Solution


Related Solutions

When light of frequency 4.96×1015 s-1 shines on the surface of a metal, electrons are ejected...
When light of frequency 4.96×1015 s-1 shines on the surface of a metal, electrons are ejected with a maximum kinetic energy of 3.88×10-19 J. a) Calculate the wavelength of this light. b) Find the binding energy of electrons to the metal. c) What is the longest wavelength of light that will eject electrons from this metal?
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 2.84 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.33 × 10 − 19 J. Determine the wavelength of light that should be used to quadruple the maximum kinetic energy of the electrons ejected from this surface.
Light striking a metal surface causes electrons to be emitted from the metal via the...
Light striking a metal surface causes electrons to be emitted from the metal via the photoelectric effect.In another experiment, the intensity of the incident light and the temperature of the metal are held constant. Assuming that the initial light incident on the metalsurface causes electrons to be ejected from the metal, what happens if the frequency of the incident light is increased?Check all that apply.The work function of the metal increases.The number of electrons emitted from the metal per second...
Intense monoenergetic light source shines on piece of metal. When wavelength of the light is more...
Intense monoenergetic light source shines on piece of metal. When wavelength of the light is more than 620 nm, no photoelectrons are emitted from metal, and shorter wavelengths begin to produce a flux of photoelectrons. A 248 nm light source is aimed at the same metal, hitting the metal with a power of 0.75 W. (a) What is the range of energies of photoelectrons produced? (b) The electrons pass through a single slit, with slit width a= 150 nm and...
A). The minimum frequency of light needed to eject electrons from a metal is called the...
A). The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 4.90 x 10^14 s^-1. B). With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of y= 275 nm?
1)The minimum frequency of light needed to eject electrons from a metal is called the threshold...
1)The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 4.55 × 1014 s–1. 2)With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
a) Electrons are ejected from a photoelectric surface with a maximum speed of 4.20 x 105...
a) Electrons are ejected from a photoelectric surface with a maximum speed of 4.20 x 105 m/s. If the work function of the metal is 2.55 eV, what is the wavelength of the incident light ? Express your answer in the format of a.bc x 10-d m b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its...
The photoelectric effect is the emission of electrons from the surface of a conductor when light...
The photoelectric effect is the emission of electrons from the surface of a conductor when light strikes it. Several important features of the photoelectric effect cannot be explained by the classical theory of electromagnetic waves. Briefly explain this phenomenon in terms of intensity, frequency, kinetic energy, and the number of photoelectrons.
When violet light and yellow light shine on a metal surface, only one color produces an...
When violet light and yellow light shine on a metal surface, only one color produces an electric current. Write 3 - 4 sentences describing the effect of each light on the metal. Would increasing the intensity of either type of light have an effect on the current produced? How does quantization help to explain these observations? (6 points) Please don't write too long :)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT