Question

In: Chemistry

calculate the concentration of a solution prepared by dissolving 35.0 g of aluminum carbonate in enough...

calculate the concentration of a solution prepared by dissolving 35.0 g of aluminum carbonate in enough water to prepare 500.0 mL of solution

Solutions

Expert Solution

We know the concentration can be considered as the term of molarity.

Molarity can be defined as the number of moles of solute present in a liter of solution.

Mathematical Expression

w= given mass

MM= molar mass

v= volume in mL

Here in the given question the molecule is .

MM= 233.99 gm/mol

v= 500 mL

w= 35.0 g

Now apply the molarity equation

Hence the concentration is 0.3 M or 0.3 moles/liter


Related Solutions

Calculate the concentration of an iodate solution prepared by dissolving 1.9853 g of KIO3 and diluting...
Calculate the concentration of an iodate solution prepared by dissolving 1.9853 g of KIO3 and diluting to 500 mL with distilled water in a volumetric flask. A 25 mL aliquot of a 0.0195 M KIO3 solution is added to a flask containing 2 g of KI and 10 mL of 0.5 M H2SO4. The resulting solution is titrated to a starch endpoint with 34.81 mL of the thiosulfate solution. Calculate the concentration of the thiosulfate solution. How will you know...
A solution is prepared by dissolving 11.6 g of a mixture of sodium carbonate and sodium...
A solution is prepared by dissolving 11.6 g of a mixture of sodium carbonate and sodium bicarbonate in 1.00 L of water. A 300.0 cm3sample of the solution is then treated with excess HNO3 and boiled to remove all the dissolved gas. A total of 0.940 L of dry CO2 is collected at 298 K and 0.972 atm. 1. Find the molarity of the carbonate in the solution. 2. Find the molarity of the bicarbonate in the solution.
A chemist prepared a solution by dissolving 52.0 g of hydrated sodium carbonate in water to...
A chemist prepared a solution by dissolving 52.0 g of hydrated sodium carbonate in water to a total volume of 5.00 dm3. The concentration was determined to be 0.0366 M. Determine the formula of the hydrated sodium carbonate.
A solution is prepared by dissolving 17.0 g of KOH in enough water to make 80.0...
A solution is prepared by dissolving 17.0 g of KOH in enough water to make 80.0 mL of solution. What is the molarity of this solution?
a) Calculate the acetate ion concentration in a solution prepared by dissolving 7.90×10-3 mol of HCl(g)...
a) Calculate the acetate ion concentration in a solution prepared by dissolving 7.90×10-3 mol of HCl(g) in 1.00 L of 9.00×10-1 M aqueous acetic acid (Ka = 1.80×10-5). _____ mol/L 1pts b) Calculate the pH of the above solution. Give your answer to two decimal places. _____
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate:...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate: a. Percent weight in weight b. The molal concentration of sucrose and water c. The mole fraction of sucrose and water in the solution
A solution was prepared by dissolving 29.0g KCl in 225 g of water. 1) Calculate the...
A solution was prepared by dissolving 29.0g KCl in 225 g of water. 1) Calculate the mass percent of KCl in the solution. 2)Calculate the mole fraction of the ionic species KCl in the solution. 3) Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. 4) Calculate the molarity of KCl in the solution.
What is the molality and molarity of solution prepared by dissolving 35.0 mL of benzene (density...
What is the molality and molarity of solution prepared by dissolving 35.0 mL of benzene (density = 0.877 g/mL) in 175 mL of hexane (density = 0.660 g/mL)? Assume volumes are additive.
Part A) Calculate the vapor pressure of water above a solution prepared by dissolving 29.5 g...
Part A) Calculate the vapor pressure of water above a solution prepared by dissolving 29.5 g of glycerin in 140 g of water at 343 K Part B) Calculate the mass of ethylene glycol that must be added to 1.00 kg of ethanol to reduce it's vapor pressure by 11.0 torr at 35° C. The vapor pressure of pure ethanol at 35°C is 1.00×10^2 torr.
A. Calculate the mass percent (m/m) of a solution prepared by dissolving 51.22 g of NaCl...
A. Calculate the mass percent (m/m) of a solution prepared by dissolving 51.22 g of NaCl in 151.9 g of H2O. B. Vinegar is a solution of acetic acid in water. If a 265 mL bottle of distilled vinegar contains 19.2 mL of acetic acid, what is the volume percent (v/v) of the solution? C. Calculate the mass/volume percent (m/v) of 20.5 g NaCl in 75.0 mL of solution. D. Calculate the molarity (M) of 155.2 g of H2SO4 in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT