Question

In: Chemistry

A solution is prepared by dissolving 17.0 g of KOH in enough water to make 80.0...

A solution is prepared by dissolving 17.0 g of KOH in enough water to make 80.0 mL of solution. What is the molarity of this solution?

Solutions

Expert Solution

Data given: Wegiht of KOH = 17 grams

                 Volume of solution = 80 ml = 80*10-3 Litre

Molar mass of KOH= 56 grams/moles

Molarity if given by ,

Molarity = number of gram moles / Volume of solution ( in Litre)

Let us now calculate number of moles,

Moles of KOH = Weight of KOH =17/56 = 0.30357 moles

Substituting all the known values in molarity equation

Molarity (M) = 0.30357 / (80*10-3) = 3.7946 M

Hence, Molarity of 80 ml KOH solution is 3.7946 M

              


Related Solutions

A solution is prepared by dissolving 171g of CdCl2 in enough water to make 250.0 mL...
A solution is prepared by dissolving 171g of CdCl2 in enough water to make 250.0 mL of solution. If the density of the solution is 1.556 g/mL, calculate: Molarity of the solution, mole fraction of CdCl2, and molality of the solution.
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The...
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The density of the resulting solution is The mole fraction of Cl- in this solution is __________ M.
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The...
A solution is prepared by dissolving 23.7 g of CaCl2 in 375 g of water. The density of the resulting solution is 1.05 g/mL. The concentration of CaCl2 in this solution is M
14. A solution is prepared by dissolving 49.3g of KBr in enough water to form 473mL...
14. A solution is prepared by dissolving 49.3g of KBr in enough water to form 473mL of solution. Calculate the mass percent of KBr in the solution if thedensity is 1.12 g/mL. a. 10.4% b. 8.57% c. 10.1% d. 11.7% e. 9.31%
calculate the concentration of a solution prepared by dissolving 35.0 g of aluminum carbonate in enough...
calculate the concentration of a solution prepared by dissolving 35.0 g of aluminum carbonate in enough water to prepare 500.0 mL of solution
A solution is made by dissolving 40.0 g of KOH in 100 mL of water (density...
A solution is made by dissolving 40.0 g of KOH in 100 mL of water (density 0.995 g/mL) to form a solution. What is the mass percent solute in the solution? 1. 40.2% 2. 40.0% 3. 3.49% 4. 28.6% 5. 28.7%
A solution is prepared by dissolving 29.2 g of glucose (C6H12O6) in 355 g of water....
A solution is prepared by dissolving 29.2 g of glucose (C6H12O6) in 355 g of water. The final volume of the solution is 378 mL . For this solution, calculate each of the following. molarity molality percent by mass mole fraction mole percent
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 26.0 g of KCl in 225 g of water. Part A: Calculate the mole fraction of KCl in the solution. Part B: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Part C: Calculate the molality of KCl in the solution.
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate:...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate: a. Percent weight in weight b. The molal concentration of sucrose and water c. The mole fraction of sucrose and water in the solution
A solution was prepared by dissolving 31.0 g of KCl in 225 g of water. Part...
A solution was prepared by dissolving 31.0 g of KCl in 225 g of water. Part A: Calculate the mass percent of KCl in the solution. Part B: Calculate the mole fraction of the ionic species KCl in the solution. Part C: Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. Part D: Calculate the molality of KCl in the solution.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT