Question

In: Mechanical Engineering

The power-plant will have 380 MWe electric power. The proposed gas-vapor cycle is different from traditionally...

The power-plant will have 380 MWe electric power.

The proposed gas-vapor cycle is different from traditionally used ones. It
consists of closed gas turbine cycle (instead of open gas turbine cycle used
commonly). The working fluid is helium and the cycle consists of a compressor, a
heater, a turbine and a cooler. The cooler acts as heat recovery steam generator
(HRSG) for steam cycle. Other components of cycle are turbine condenser and
pump. The condition at inlet to compressor is to be taken as 750 kPa, 60oC. The
compressor pressure ratio is 4.0 and the maximum turbine inlet temperature is
900oC. Steam leaves the HRSG at 1 MPa and 300oC. The condenser pressure is 10
kPa. Assume pressure loss across heater, HRSG, condenser and connecting piping
to be negligible. Also, assume hundred percent efficiency for all component.
Calculate the mass flow rate of helium and steam required to provide the desired
power output, the cycle efficiency, and the cycle heat rate. Also estimate the exergy
destruction for this cycle. The environmental conditions are 100 kPa and 30oC.
Estimate pinch-point temperature difference? Is this cycle feasible?

Solutions

Expert Solution


Related Solutions

what are some examples of everyday objects/things that use: gas power cycle vapor power cycle refrigeration...
what are some examples of everyday objects/things that use: gas power cycle vapor power cycle refrigeration cycle
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stagge at 12 MPa, 560*C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 6 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 520◦C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 6 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. For isentropic processes in the turbines and...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 50 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 28 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...
An electric utility is considering a new power plant in northern Arizona. Power from the plant...
An electric utility is considering a new power plant in northern Arizona. Power from the plant would be sold in the Phoenix area, where it is badly needed. Because the firm has received a permit, the plant would be legal; but it would cause some air pollution. The company could spend an additional $40 million at Year 0 to mitigate the environmental problem, but it would not be required to do so. The plant without mitigation would cost $269.63 million,...
An electric utility is considering a new power plant in northern Arizona. Power from the plant...
An electric utility is considering a new power plant in northern Arizona. Power from the plant would be sold in the Phoenix area, where it is badly needed. Because the firm has received a permit, the plant would be legal; but it would cause some air pollution. The company could spend an additional $40 million at Year 0 to mitigate the environmental problem, but it would not be required to do so. The plant without mitigation would require an initial...
An electric utility is considering a new power plant in northern Arizona. Power from the plant...
An electric utility is considering a new power plant in northern Arizona. Power from the plant would be sold in the Phoenix area, where it is badly needed. Because the firm has received a permit, the plant would be legal; but it would cause some air pollution. The company could spend an additional $40 million at Year 0 to mitigate the environmental problem, but it would not be required to do so. The plant without mitigation would require an initial...
An electric utility is considering a new power plant in northern Arizona. Power from the plant...
An electric utility is considering a new power plant in northern Arizona. Power from the plant would be sold in the Phoenix area, where it is badly needed. Because the firm has received a permit, the plant would be legal; but it would cause some air pollution. The company could spend an additional $40 million at Year 0 to mitigate the environmental problem, but it would not be required to do so. The plant without mitigation would require an initial...
An electric utility is considering a new power plant in northern Arizona. Power from the plant...
An electric utility is considering a new power plant in northern Arizona. Power from the plant would be sold in the Phoenix area, where it is badly needed. Because the firm has received a permit, the plant would be legal; but it would cause some air pollution. The company could spend an additional $40 million at Year 0 to mitigate the environmental problem, but it would not be required to do so. The plant without mitigation would require an initial...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT