In: Operations Management
The following are historical demand data:
YEAR | SEASON | ACTUAL DEMAND |
2 years ago | Spring | 205 |
Summer | 140 | |
Fall | 375 | |
Winter | 575 | |
last year | Spring | 475 |
Summer | 275 | |
Fall | 685 | |
Winter | 965 | |
Use regression analysis and seasonal indexes to forecast next summer’s demand. (Do not round intermediate calculations. Round your answer to the nearest whole number.)
Year |
Season |
Actual Demand |
2 years ago |
Spring |
205 |
Summer |
140 |
|
Fall |
375 |
|
Winter |
575 |
|
Last Year |
Spring |
475 |
Summer |
275 |
|
Fall |
685 |
|
Winter |
965 |
Quarterly average demand = (205 + 140 + 375 + 575 + 475 + 275 + 685 + 965) / 8
= 461.88
Season |
Average demand |
Seasonal Index |
Spring |
(205+475)/2 = 340 |
340/461.88 = 0.736 |
Summer |
(140+275)/2 = 207.5 |
207.5/461.88 = 0.449 |
Fall |
(375+685)/2 = 530 |
530/461.88 = 1.147 |
Winter |
(575+965)/2 = 770 |
770/461.88 = 1.667 |
4.0000 |
Period X | Demand | Deseasonalized Demand y | XY | X^2 | ||
1 | 205 | 278.53 | 278.53 | 1 | ||
2 | 140 | 311.80 | 623.61 | 4 | ||
3 | 375 | 326.94 | 980.82 | 9 | ||
4 | 575 | 344.93 | 1379.72 | 16 | ||
5 | 475 | 645.38 | 3226.90 | 25 | ||
6 | 275 | 612.47 | 3674.83 | 36 | ||
7 | 685 | 597.21 | 4180.47 | 49 | ||
8 | 965 | 578.88 | 4631.07 | 64 | ||
Sum | 36 | 3696.15 | 18975.96 | 204.00 | ||
Avg | 4.5 | 462.02 | ||||
Slope(b) = (N∑XY - (∑X)(∑Y)) / (N∑X2 - (∑X)2) | ||||||
Slope(b) = (8*18975.96 - (36)(3696.15)) / (8*204 - (36)^2) | ||||||
Slope (b)=55.79 | ||||||
a= Y bar - b X bar | ||||||
a=462.02-55.79*4.5 | ||||||
a=210.965 | ||||||
Y=210.965+55.79x | ||||||
for next summer, X=10 | ||||||
Y=210.965+55.79*10 | ||||||
Y=768.865 | ||||||
Forecast, summer reseasonalized =768.865*0.449 =345.22 | ||||||
Answer is 345.22