Question

In: Physics

Two hard rubber spheres, each of mass m = 13.8 g, are rubbed with fur on...

Two hard rubber spheres, each of mass m = 13.8 g, are rubbed with fur on a dry day and are then suspended with two insulating strings of length L = 5.25 cm whose support points are a distance d = 2.70 cm from each other as shown in the figure below. During the rubbing process, one sphere receives exactly twice the charge of the other. They are observed to hang at equilibrium, each at an angle of θ = 10.7° with the vertical. Find the amount of charge on each sphere. (Assume the two spheres have charges q1 and q2 = 2q1)

Solutions

Expert Solution


Related Solutions

Two small metallic spheres, each of mass m = 0.210 g, are suspended as pendulums by...
Two small metallic spheres, each of mass m = 0.210 g, are suspended as pendulums by light strings of length L as shown in the figure below. The spheres are given the same electric charge of 6.8 nC, and they come to equilibrium when each string is at an angle of ? = 4.85
When a rubber rod is rubbed with fur, the rod becomes negatively charged because of the transfer of:
When a rubber rod is rubbed with fur, the rod becomes negatively  charged because of the transfer of:  a) electrons to the fur b) protons to the fur  c) electrons to the rod d) protons to the  rod
Two small spheres, each of mass m and of negligible radius, are connected by a massless...
Two small spheres, each of mass m and of negligible radius, are connected by a massless rigid rod of length d such that the there is length d between the centers of masses of the two spheres, and the centers of masses of the spheres and the center of mass of the rod are in the same plane.   1. The moment of inertia about an axis perpendicular to the connecting rod and through its center is: a. 0 b. 0.25md2...
Two metal spheres of identical mass m = 3.60 g are suspended by light strings 0.500...
Two metal spheres of identical mass m = 3.60 g are suspended by light strings 0.500 m in length. The left-hand sphere carries a charge of 0.765 µC, and the right-hand sphere carries a charge of 1.61 µC. What is the equilibrium separation between the centers of the two spheres?
Two identical, uniform and frictionless spheres, each of mass m, rest in a rigid rectangular container...
Two identical, uniform and frictionless spheres, each of mass m, rest in a rigid rectangular container as shown in the figure. A line connecting their centers is at 45° to the horizontal. a)If the angle is increased to 90° think about what happens to the forces. This can help provide a check to your answers as we make a change to the problem. For all of the following questions, the configuration is now changed such that the line connecting their...
Avagadro's number of carbon atoms have a mass of 12.0 g. Two identical graphite spheres each...
Avagadro's number of carbon atoms have a mass of 12.0 g. Two identical graphite spheres each have a mass of m = 4.21 g. If we could transfer one electron from each atom in the first sphere to an atom in the second sphere, what would be the magnitude of the attractive force between the spheres if they are separated by 1.00 m?
Two uniform solid spheres, each with mass 0.800 kg and radius 8.00×10−2 m, are connected by...
Two uniform solid spheres, each with mass 0.800 kg and radius 8.00×10−2 m, are connected by a short, light rod that is along a diameter of each sphere and are at rest on a horizontal tabletop. A spring with force constant 157 N/m has one end attached to the wall and the other end attached to a frictionless ring that passes over the rod at the center of mass of the spheres, which is midway between the centers of the...
Two tiny spheres of mass m = 8.80mg carry charges of equal magnitude, 72.0 nC, but...
Two tiny spheres of mass m = 8.80mg carry charges of equal magnitude, 72.0 nC, but opposite sign. They are tied to the same ceiling hook by light strings of length 0.530 m. When a horizontal uniform electric field E that is directed to the left is turned on, the spheres hang at rest with the angle ? between the strings equal to 50.0?in the following figure
Two solid spheres are running down from incline of height 3.7 m. Sphere A has mass...
Two solid spheres are running down from incline of height 3.7 m. Sphere A has mass 3.3 kg; radius 15.7 cm; sphere B has mass 7.4 kg and radius of 39.3 cm. Find the ratio of their angular velocities omegaA/omegaB at the bottom of the incline.
Two spheres, one solid, one a thin shell, each have a mass of 0.89 kg and...
Two spheres, one solid, one a thin shell, each have a mass of 0.89 kg and a radius of 11 cm. They are given the same torque of 0.13 mN acting for 7 s. Which sphere is rotating faster?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT