Question

In: Physics

A uniform magnetic field is directed into the page. A charged particle, moving in the plane...

uploaded imageA uniform magnetic field is directed into the page. A charged particle, moving in the plane of the page, follows a clockwise spiral of decreasing radius as shown. A reasonable explanation is:

a.the charge is negative and speeding up
b.none of these
c.the charge is negative and slowing down
d.the charge is positive and slowing down
e.the charge is positive and speeding up

Solutions

Expert Solution

\(r=\frac{m v}{B q}\)

Since the radius is decreasing, the charge must be slowing down.

and because it follows a clockwise spiral it must be a negative charge.


Related Solutions

A positively-charged particle is moving in the +x-direction. A uniform magnetic field in the +z direction...
A positively-charged particle is moving in the +x-direction. A uniform magnetic field in the +z direction is then applied. What is the direction of the magnetic force on the charge?
A charged particle moving through a magnetic field at right angles to the field with a...
A charged particle moving through a magnetic field at right angles to the field with a speed of 35.1 m/s experiences a magnetic force of 7.56x10-4 N. Determine the magnetic force on an identical particle when it travels through the same magnetic field with a speed of 8.7 m/s at an angle of 44° relative to the magnetic field. Express your answer in microNewtons.
A uniform magnetic field is directed straight up, out of the page. Four charged particles (A,B,C,D)...
A uniform magnetic field is directed straight up, out of the page. Four charged particles (A,B,C,D) all travel with the same speed, but in different directions. The four cardinal directions (N, S, E, W) are all in the plane of the page. The particle types and directions of travel are given below. Rank the particles by the magnitude of the magnetic force acting on them from greatest to least. A) particle: electron; direction: up, out of page; B) particle: electron;...
A uniform magnetic field of strength .0050 T is directed out of the page. A wire...
A uniform magnetic field of strength .0050 T is directed out of the page. A wire oriented vertically in the field carries a current of 1.20 A up. a) Sketch the situation. b) Indicate the direction of the force on the wire. c) Find the magnitude of the force/length on the wire.
A uniform magnetic field B is directed into the page. A circular circuit of radius r...
A uniform magnetic field B is directed into the page. A circular circuit of radius r containing a resistor R and a capacitor C, is placed in this field. Initially the capacitor is uncharged, and at time t = 0, the magnitude of the magnetic field starts to change at a rate dB/dt = x, x > 0. a) Using Lenz’s law, determine the direction of the induced current in the closed loop. Justify your answer. b) Calculate the induced...
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by...
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by the expression: B (r, t) = (10^−6 )[xˆ + 2yˆ + Bzzˆ] cos [ωt + 3x - y - z] in m.k.s.units and where xˆ, yˆ, zˆ are unit vectors along the cartesians axes . Find: (a) The propagation direction. (b) The wavelength λ. (c) The angular frequency ω. (d) The associated electrical field
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic field of B = 1 Tesla applied in z-direction. At time t = 0 s, it is located at r = (0, 10, 0) m and its velocity is v = (10, 0, 0) m/s. (a) Qualitative motion Draw a diagram of the situation when the proton starts its motion, showing its instantaneous velocity v0, the magnetic field vector B and the direction of...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic field of B = 1 Tesla applied in z-direction. At time t = 0 s, it is located at r = (0, 10, 0) m and its velocity is v = (10, 0, 0) m/s. (a) Qualitative motion Draw a diagram of the situation when the proton starts its motion, showing its instantaneous velocity v0, the magnetic field vector B and the direction of...
Magnetic Force Vector Drawing The situations below, a charged particle enters a region of uniform magnetic...
Magnetic Force Vector Drawing The situations below, a charged particle enters a region of uniform magnetic field. Draw a vector to represent the direction of the magnetic force on the particle. Part A Draw the vector starting at the location of the charge. The location and orientation of the vector will be graded.The length of the vector will not be graded.
A particle with charge +7.60 nC is inside a uniform electric field directed to the left....
A particle with charge +7.60 nC is inside a uniform electric field directed to the left. Another force, in addition to the electric force, acts on the particle so that when it is released from rest, it moves to the right. After it has moved 8.00 cm, the additional force has done 6.50∙10-5 J of work and the particle has 4.35∙10-5 J of kinetic energy. (a) What work was done by the electric force? (b) What is the potential of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT