Question

In: Physics

A uniform magnetic field is directed straight up, out of the page. Four charged particles (A,B,C,D)...

  1. A uniform magnetic field is directed straight up, out of the page. Four charged particles (A,B,C,D) all travel with the same speed, but in different directions. The four cardinal directions (N, S, E, W) are all in the plane of the page. The particle types and directions of travel are given below. Rank the particles by the magnitude of the magnetic force acting on them from greatest to least.
  2. A) particle: electron; direction: up, out of page;
  3. B) particle: electron; direction: west;
    C) particle: proton; direction: east;
    D) particle: proton; direction: 45° north of east;

Solutions

Expert Solution

Magnetic force acting on a charged particle,

F = B*V*q Sin (@)

Since protons and electrons have same charge ,force depends only on angle between magnetic field and velocity.

Where, angle " @ " is in between the magnetic field and Velocity.

1) force equal to zero . Because velocity and magnetic field are in same direction (out of the page ) Sin( 0) = 0

2) Force directed the southward ( largest)

3) Force directed southward (largest)

4)Force directed towards 45 degree East of South, because the angle between magnetic field and Velocity is " 90degree" (Largest).You should notice that @ is the angle between magnetic field and Velocity .

Order is 4=3=2>1


Related Solutions

A uniform magnetic field is directed into the page. A charged particle, moving in the plane...
A uniform magnetic field is directed into the page. A charged particle, moving in the plane of the page, follows a clockwise spiral of decreasing radius as shown. A reasonable explanation is: a.the charge is negative and speeding up b.none of these c.the charge is negative and slowing down d.the charge is positive and slowing down e.the charge is positive and speeding up
A uniform magnetic field of strength .0050 T is directed out of the page. A wire...
A uniform magnetic field of strength .0050 T is directed out of the page. A wire oriented vertically in the field carries a current of 1.20 A up. a) Sketch the situation. b) Indicate the direction of the force on the wire. c) Find the magnitude of the force/length on the wire.
A uniform magnetic field B is directed into the page. A circular circuit of radius r...
A uniform magnetic field B is directed into the page. A circular circuit of radius r containing a resistor R and a capacitor C, is placed in this field. Initially the capacitor is uncharged, and at time t = 0, the magnitude of the magnetic field starts to change at a rate dB/dt = x, x > 0. a) Using Lenz’s law, determine the direction of the induced current in the closed loop. Justify your answer. b) Calculate the induced...
Five equal-mass particles (A-E) enter a region of uniform magnetic field directed into the page. They follow the trajectories illustrated in the figure.
Charged Particles Moving in a Magnetic Field Ranking Task Five equal-mass particles (A-E) enter a region of uniform magnetic field directed into the page. They follow the trajectories illustrated in the figure. (Figure 1)Now assume that particles A, B, C, and E all have the same magnitude of electric charge. Rank the particles A, B, C. and E on the basis of their speed. Rank from largest to smallest. To rank items as equivalent, overlap them.
A uniform electric field is directed out of the page within a circular region of radius...
A uniform electric field is directed out of the page within a circular region of radius R = 2.50 cm. The magnitude of the electric field is given by E = (3.50 × 10-3 V/m•s)t, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)1.50 cm and (b)6.50 cm?
A magnetic field directed into the page changes with time according to B = 0.0240t2 + 1.40
A magnetic field directed into the page changes with time according to B = 0.0240t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see figure below).  (a) When t = 1.65 s and r2 = 0.020 0 m, what is the magnitude of the electric field at point P2? (b) When t = 1.65 s and r2 = 0.020 0 m, what is the direction...
A magnetic field directed into the page changes with time according to B = 0.069 0t2...
A magnetic field directed into the page changes with time according to B = 0.069 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see figure below). When t = 3.20 s  and r2 = 0.020 0 m, what is the magnitude of the electric field at point P2?
A pair of charged conducting plates produces a uniform field of 12,000 N/C, directed to the...
A pair of charged conducting plates produces a uniform field of 12,000 N/C, directed to the right, between the plates. The separation of the plates is 40 mm. An electron is projected from plate A, directly toward plate B, with an initial velocity of v0 = 2.0 x 107 m/ s, as shown in the figure. The velocity of the electron as it strikes plate B is closest to a. 2.1 x 107 m/s b. 1.8 x 107 m/s c....
3. A uniform magnetic field of magnitude B = 0.400 T is directed along the positive...
3. A uniform magnetic field of magnitude B = 0.400 T is directed along the positive x axis (see figure). A positron (anti–electron) moving at a speed of v = 3.00 × 103 m·s-1 enters the magnetic field along a direction that makes an angle of 37.0o with the x axis. The mass of the charge is m = 9.1×10-31 kg. a) Write the Lorentz force (in vector form) for the general case and the actual case shown in the...
1. Charged particles moving in a magnetic field experience a force a in their direction of...
1. Charged particles moving in a magnetic field experience a force a in their direction of travel. b opposite to their direction of travel. c perpendicular to their direction of travel. d That does not depend on their direction of travel. 2. The unit for the magnetic field is the a newton. b joule per coulomb. c volt. d tesla. 3. An electron (m = 9.11x10-31 kg, q = 1.60x10-19 C) is moving in a uniform magnetic field, perpendicular to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT