Question

In: Physics

A positively-charged particle is moving in the +x-direction. A uniform magnetic field in the +z direction...

A positively-charged particle is moving in the +x-direction. A uniform magnetic field in the +z direction is then applied. What is the direction of the magnetic force on the charge?

Solutions

Expert Solution

The direction can be found out using Right-hand Rule, which states that,

In order to find the direction of the magnetic force (F) on a positive moving charge, the thumb of the right hand must point in the direction of the velocity vector,v (in the direction of motion), the fingers in the direction of the magnetic field (B), then the force (F) is directed perpendicular to the right-hand palm.

NB : The direction of the force (F) on a negative charge is in the opposite sense to that stated above (so pointed away from the back of your hand).

It is as depicted in the picture.

So in the given case,

  • A positively-charged particle is moving in the +x-direction. So the direction of velocity is along +X axis. So your right-hand thumb must point in the direction of +X axis (to your right side).
  • The magnetic field is in the +z direction. So your fingers must point in the direction of +Z axis (towards you).

So the plane of the palm will be now facing downwards, so the direction of force is downwards, ie, along -Y axis


Related Solutions

A uniform magnetic field is directed into the page. A charged particle, moving in the plane...
A uniform magnetic field is directed into the page. A charged particle, moving in the plane of the page, follows a clockwise spiral of decreasing radius as shown. A reasonable explanation is: a.the charge is negative and speeding up b.none of these c.the charge is negative and slowing down d.the charge is positive and slowing down e.the charge is positive and speeding up
1. An electron, initially moving in the +x-direction enters a uniform magnetic field in the +y-direction....
1. An electron, initially moving in the +x-direction enters a uniform magnetic field in the +y-direction. What is the direction of the initial magnetic force on the electron? None of the choices is correct. between +x and +y-directions +z-direction between +x and –y-directions –z-direction 2. A small light source radiates light uniformly in all directions at a rate of 10 W. What is the light intensity at a distance of 2 m from the source? 0.4 W/m2 0.8 W/m2 0.2...
A charged particle moving through a magnetic field at right angles to the field with a...
A charged particle moving through a magnetic field at right angles to the field with a speed of 35.1 m/s experiences a magnetic force of 7.56x10-4 N. Determine the magnetic force on an identical particle when it travels through the same magnetic field with a speed of 8.7 m/s at an angle of 44° relative to the magnetic field. Express your answer in microNewtons.
1. Charged particles moving in a magnetic field experience a force a in their direction of...
1. Charged particles moving in a magnetic field experience a force a in their direction of travel. b opposite to their direction of travel. c perpendicular to their direction of travel. d That does not depend on their direction of travel. 2. The unit for the magnetic field is the a newton. b joule per coulomb. c volt. d tesla. 3. An electron (m = 9.11x10-31 kg, q = 1.60x10-19 C) is moving in a uniform magnetic field, perpendicular to...
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction.
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction. what is the direction of the magnetic field?a) it is in the negative z directionb) it is in the postive y directionc)it is in the positive z directiond) it is in the negative x directione) it is in the postive x direction
A velocity selector is used to separate charged particles moving in the negative x-direction. The magnetic...
A velocity selector is used to separate charged particles moving in the negative x-direction. The magnetic field points in the positive y-direction. In which direction does the electric field point? A velocity selector is used to separate charged particles moving in the negative y-direction. The magnetic field points in the negative z-direction. In which direction does the electric field point?
A uniform magnetic field with magnitude 1.2 mT is directed vertically upward, along z direction, through...
A uniform magnetic field with magnitude 1.2 mT is directed vertically upward, along z direction, through a Hall probe thin flat conductor. A proton with 5.3 GeV enters the thin flat conductor moving horizontal, along x direction. Due to electron flow, an electric field 36 N/C is originated. The proton mass is 1.67x10-27 kg and the electron mass is 9.31x10-31 kg. Now, (i) draw the relevant Hall effect scenario with Hall voltage direction, (ii) what magnetic deflecting force acts on...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic field of B = 1 Tesla applied in z-direction. At time t = 0 s, it is located at r = (0, 10, 0) m and its velocity is v = (10, 0, 0) m/s. (a) Qualitative motion Draw a diagram of the situation when the proton starts its motion, showing its instantaneous velocity v0, the magnetic field vector B and the direction of...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic...
Consider a particle with a charge-to-mass ratio of ?/? = 1 moving in a uniform magnetic field of B = 1 Tesla applied in z-direction. At time t = 0 s, it is located at r = (0, 10, 0) m and its velocity is v = (10, 0, 0) m/s. (a) Qualitative motion Draw a diagram of the situation when the proton starts its motion, showing its instantaneous velocity v0, the magnetic field vector B and the direction of...
Magnetic Force Vector Drawing The situations below, a charged particle enters a region of uniform magnetic...
Magnetic Force Vector Drawing The situations below, a charged particle enters a region of uniform magnetic field. Draw a vector to represent the direction of the magnetic force on the particle. Part A Draw the vector starting at the location of the charge. The location and orientation of the vector will be graded.The length of the vector will not be graded.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT