Question

In: Math

Let X be a uniform random variable with pdf f(x) = λe−λx for x > 0,...

Let X be a uniform random variable with pdf f(x) = λe−λx for x > 0, and cumulative distribution function F(x).

(a) Show that F(x) = 1−e −λx for x > 0, and show that this function satisfies the requirements of a cdf (state what these are, and show that they are met). [4 marks]

(b) Draw f(x) and F(x) in separate graphs. Define, and identify F(x) in the graph of f(x), and vice versa. [Hint: write the mathematical relationships, and show graphically what the functions represent.] [4 marks]

(c) X has mgf M(t) = λ(λ−t) −1 . Derive the mean of the random variable from first principles (i.e. using the pdf and the definition of expectation). Also show how this mean can be obtained from the moment generating function. [10 marks]

(d)

(i) Show that F −1 (x) = − 1 λ ln(1 − x) for 0 < x < 1, where ln(x) is the natural logarithm. [4 marks]

(ii) If 0 < p < 1, solve F(xp) = p for xp, and explain what xp represents. [4 marks] (iii) If U ∼ U(0, 1) is a uniform random variable with cdf FU (x) = x (for 0 < x < 1), prove that X = − 1 λ ln(1 − U) is exponential with parameter λ. Hence, describe how observations of X can be simulated. [4 marks]

Solutions

Expert Solution


Related Solutions

Let X be a exponential random variable with pdf f(x) = λe−λx for x > 0,...
Let X be a exponential random variable with pdf f(x) = λe−λx for x > 0, and cumulative distribution function F(x). (a) Show that F(x) = 1−e −λx for x > 0, and show that this function satisfies the requirements of a cdf (state what these are, and show that they are met). [4 marks] (b) Draw f(x) and F(x) in separate graphs. Define, and identify F(x) in the graph of f(x), and vice versa. [Hint: write the mathematical relationships,...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to...
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to the power of Y. What is the distribution of Z?
2. Let X be a uniform random variable over the interval (0, 1). Let Y =...
2. Let X be a uniform random variable over the interval (0, 1). Let Y = X(1-X). a. Derive the pdf for Y . b. Check the pdf you found in (a) is a pdf. c. Use the pdf you found in (a) to find the mean of Y . d. Compute the mean of Y by using the distribution for X. e. Use the pdf of Y to evaluate P(|x-1/2|<1/8). You cannot use the pdf for X. f. Use...
5. Consider a random variable with a piecewise-constant PDF f(x) = 1/2, 0 < x ?...
5. Consider a random variable with a piecewise-constant PDF f(x) = 1/2, 0 < x ? 1, 1/8, 1 < x ? 3, 1/12 , 3 < x < 6. Design the simulation algorithm using the inverse-transform method.
Let X be a continuous random variable that has a uniform distribution between 0 and 2...
Let X be a continuous random variable that has a uniform distribution between 0 and 2 and let the cumulative distribution function F(x) = 0.5x if x is between 0 and 2 and let F(x) = 0 if x is not between 0 and 2. Compute 1. the probability that X is between 1.4 and 1.8 2. the probability that X is less than 1.2 3. the probability that X is more than 0.8 4. the expected value of X...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
Let X be an exponential random variable with parameter λ, which means that fX(x) = λe^(−λx)...
Let X be an exponential random variable with parameter λ, which means that fX(x) = λe^(−λx) * u(x). (a) For x > 0, find P(X ≤ x). (b) For x2 > x1 > 0, find P(x1 ≤ X ≤ x2). (c) For x > 0, find P(X ≥ x). (d) Segment the positive real line into three equally likely disjoint intervals.
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT