In: Math
Say we have the following hypotheses
H0: μ <50
HA: μ > 50
We know that the population standard deviation is 8. If we collect a sample of 64 observations and want α = 0.05, calculate whether or not we reject the null for the following sample means: a.x̅=52.5
b.x̅=51
c.x̅=51.8
Solution:
H0: μ <50
HA: μ > 50
> sign in HA indicates "Right tailed test"
= 8
n = 64
α = 0.05
a) x̅ = 52.5
Test statistic
z = (x̅ - μ)/(/n) = ((52.5 - 50)/(8/64) = 2.50
p value = P(Z > 2.50) = P(Z < -2.50) = 0.0062
Since p value < α = 0.05
We reject the null hypothesis.
b) x̅ = 51
Test statistic
z = (x̅ - μ)/(/n) = ((51 - 50)/(8/64) = 1.00
p value = P(Z > 1.00) = P(Z < -1.00) = 0.1587
Since p value > α = 0.05
We do not reject the null hypothesis.
c) x̅ = 51.8
Test statistic
z = (x̅ - μ)/(/n) = ((51.8 - 50)/(8/64) = 1.80
p value = P(Z > 1.80) = P(Z < -1.80) = 0.0359
Since p value < α = 0.05
We reject the null hypothesis.