Question

In: Statistics and Probability

(SHOW YOUR WORK!!!) Assume that the heights of women are normally distributed with a mean of...

(SHOW YOUR WORK!!!)

Assume that the heights of women are normally distributed with a mean of 65 inches and a standard deviation of 3.5 inches. If a single woman is randomly selected, find the probability that they have a height greater than 69 inches.

Solutions

Expert Solution

Solution :

Given that,

mean = = 65

standard deviation = = 3.5

n=1

= =65

= / n = 3.5/ 1= 3.5

P( >69 ) = 1 - P( <69 )

= 1 - P[( - ) / < (69 -65) /3.5 ]

= 1 - P(z <1.14 )

Using z table

= 1 - 0.8729

= 0.1271

probability= 0.1271


Related Solutions

Assume that women have heights that are normally distributed with a mean of 64.1 inches and...
Assume that women have heights that are normally distributed with a mean of 64.1 inches and a standard deviation of 2.5 inches. Find the 85th percentile of women's heights.
1.Assume that the heights of adult women are normally distributed with a mean height of 160...
1.Assume that the heights of adult women are normally distributed with a mean height of 160 centimeters and the standard deviation is 8 centimeters. What percentage of individuals have heights less than 160 centimeters? 2. Find the probability that a randomly selected individual has a height greater than 176 centimeters. 3. Find the probability that a randomly selected individual has a height less than 152 centimeters. 4. Can you determine the probability that a randomly selected individual has a height...
6. The heights of women are normally distributed with a mean of 65 in. and a...
6. The heights of women are normally distributed with a mean of 65 in. and a standard deviation of 2.5 in. The heights of men are normally distributed with a mean of 70 in. and a standard deviation of 3.0 in. Relative to their peers, who would be considered taller: A 68 in. woman or a 74 in. man? 7. The lengths of adult blue whales are normally distributed with a mean of 30 meters and a standard deviation of...
heights of women are normally distributed with a mean of 63.6 inches and a std.dev of...
heights of women are normally distributed with a mean of 63.6 inches and a std.dev of 2.5 find the 83rd percentile if one woman is randomly selected find the probability she has a height greater thanks 6 ft if 16 women are randomly selected find the prob their mean weight is greater than 5’6
The heights of North American women are normally distributed with a mean of 64 inches and...
The heights of North American women are normally distributed with a mean of 64 inches and a standard deviation of 2 inches. (a) What is the probability that a randomly selected woman is taller than 66 inches? (b) A random sample of 40 women is selected. What is the probability that the sample mean height is greater than 66 inches?
The heights of American women 18 to 29 are normally distributed with a mean of 65...
The heights of American women 18 to 29 are normally distributed with a mean of 65 inches and a standard deviation of 3.5 inches. An American woman in this age bracket is chosen at random. What is the probability that she is more than 68 inches stall? What is the probability that she is less than 64 inches tall? What is the probability that she is between 63 and 67 inches tall? What is the probability that an American woman's...
Heights of women are normally distributed with a mean of 63.8 inches and a standard deviation...
Heights of women are normally distributed with a mean of 63.8 inches and a standard deviation of 2.6 inches. a) find the probability that the height of a single randomly chosen women is less than 62 inches b) find the probability that the mean height of a sample of 16 women is less than 62 inches
The distribution of heights of adult women is Normally distributed, with a mean of 65 inches...
The distribution of heights of adult women is Normally distributed, with a mean of 65 inches and a standard deviation of 3.5 inches.Susan's height has a z-score of negative 0.5 when compared to all adult women in this distribution. What does this z-score tell us about how Susan's height compares to other adult women in terms of height?
Assume that the heights of men are normally distributed with a mean of 70.7 inches and...
Assume that the heights of men are normally distributed with a mean of 70.7 inches and a standard deviation of 2.8 inches. If 64 men are randomly selected, Find:- (a) Describe the sampling distribution of x. Sketch the distribution. (b) Find the probability that they have a mean height greater than 71.7 inches. (c) Find the probability that they have a mean height between 68.5 and 73 inches. (d) Find the 95th percentile of the heights of men.
Assume that the heights of men are normally distributed with a mean of 68.1 inches and...
Assume that the heights of men are normally distributed with a mean of 68.1 inches and a standard deviation of 2.8 inches. If 64 men are randomly​ selected, find the probability that they have a mean height greater than 69.1 inches. ​(Round your answer to three decimal places​.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT