Question

In: Physics

Calculate the flux of the vector field F? (r? )=9r? , where r? =?x,y,z?, through a...

Calculate the flux of the vector field F? (r? )=9r? , where r? =?x,y,z?, through a sphere of radius 4 centered at the origin, oriented outward.

Flux =

Solutions

Expert Solution

Please like the answer and comment if doubts


Related Solutions

Use the divergence theorem to calculate the flux of the vector field F⃗ (x,y,z)=−5xyi⃗ +2yzj⃗ +4xzk⃗  through...
Use the divergence theorem to calculate the flux of the vector field F⃗ (x,y,z)=−5xyi⃗ +2yzj⃗ +4xzk⃗  through the sphere S of radius 2 centered at the origin and oriented outward. ∬SF⃗ ⋅dA⃗ =
Find the flux of the vector field  F  =  x i  +  e2x j  +  z ...
Find the flux of the vector field  F  =  x i  +  e2x j  +  z k  through the surface S given by that portion of the plane  2x + y + 8z  =  7  in the first octant, oriented upward.
Find the flux of the vector field V(x, y, z) = 7xy2i + 2x2yj + z3k...
Find the flux of the vector field V(x, y, z) = 7xy2i + 2x2yj + z3k out of the unit sphere.
Verify the Divergence Theorem for the vector field F(x, y, z) = < y, x ,...
Verify the Divergence Theorem for the vector field F(x, y, z) = < y, x , z^2 > on the region E bounded by the planes y + z = 2, z = 0 and the cylinder x^2 + y^2 = 1. By Surface Integral: By Triple Integral:
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along...
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along the curve which is given by the intersection of the cylinder x 2 + y 2 = 4 and the plane x + y + z = 2 starting from the point (2, 0, 0) and ending at the point (0, 2, 0) with the counterclockwise orientation.
Use the extended divergence theorem to compute the total flux of the vector field F(x, y,...
Use the extended divergence theorem to compute the total flux of the vector field F(x, y, z) = −3x2 + 3xz − y, 2y3 − 6y, 9x2 + 4z2 − 3x outward from the region F that lies inside the sphere x2 + y2 + z2 = 25 and outside the solid cylinder x2 + y2 = 4 with top at z = 1 and bottom at z = −1.
Let F be a vector field. Find the flux of F through the given surface. Assume...
Let F be a vector field. Find the flux of F through the given surface. Assume the surface S is oriented upward. F = eyi + exj + 24yk; S that portion of the plane x + y + z = 6 in the first octant.
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of...
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of the following expressions is meaningful. Which one? a) grad f x div F b) div(curl(grad f)) c) div(div F) d) curl(div(grad f)) e) grad(curl F)
Find the flux of the vector field F = (3x + 1, 2xe^z , 3y^2 z...
Find the flux of the vector field F = (3x + 1, 2xe^z , 3y^2 z + z^3 ) across the outward oriented faces of a cube without the front face at x = 2 and with vertices at (0,0,0), (2,0,0), (0,2,0) and (0,0,2).
Compute the derivative of the given vector field F. Evaluate the line integral of F(x,y,z) = (y+z+yz , x+z+xz , x+y+xy )
Compute the derivative of the given vector field F. Evaluate the line integral of F(x,y,z) = (y+z+yz , x+z+xz , x+y+xy )over the path C consisting of line segments joining (1,1,1) to (1,1,2), (1, 1, 2) to (1, 3, 2), and (1, 3, 2) to (4, 3, 2) in 3 different ways, along the given path, along the line from (1,1,1) to (4,3,2), and finally by finding an anti-derivative, f, for F.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT