Question

In: Mechanical Engineering

Consider a circular air duct (no insulation) with a constant diameter of 10 cm and length...

Consider a circular air duct (no insulation) with a constant diameter of 10 cm and length of 1 m. The inlet condition is 40 deg C and 20 m/s. The wall of the duct is at a constant temperature of 25 deg C.

a) Find the exit temperature of the air flow. Report answer in deg C with 3 significant figures.

b) Find the rate of heat lost from the air flow. Report answer in kW with 3 significant figures.

Solutions

Expert Solution


Related Solutions

Question 1 a) A cylindrical feedstock of length = 35.4 cm and diameter = 10 cm...
Question 1 a) A cylindrical feedstock of length = 35.4 cm and diameter = 10 cm is subjected to turning using a high speed steel tool. For this tool, n and C values in the Taylor tool life equation are 0.125 and 70 m/min, respectively. The cost for hiring an operator and using the machine tool are $82 per hour. The tooling cost per edge of cutting is $5. Loading and unloading the part on to the machine takes about...
Air enters a horizontal, constant-diameter heating duct operating at steady state at 280 K, 1 bar,...
Air enters a horizontal, constant-diameter heating duct operating at steady state at 280 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.05 m2. Assuming the ideal gas model with k = 1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air, in kW
Air flows through a constant area duct. The pressure and temperature of the air at the...
Air flows through a constant area duct. The pressure and temperature of the air at the inlet to the duct are P1 = 100 kPa absolute, and T1 = 298 K, respectively. Inlet Mach number is M1 = 0.1. Heat is transferred to the air as it flows through the duct and as a result the Mach number at the exit increases. Write a Matlab code and plot the following: a) Find the pressure and temperature at the exit, while...
Consider a 9 mm diameter circular tube, calculate the length of tube that is required to...
Consider a 9 mm diameter circular tube, calculate the length of tube that is required to transfer 100 W of water that circulates through the tube at a rate of 0.08 kg / s. The temperature of the water is kept constant at 50 ° C and the wall of the tube is maintained at 45 ° C.
A hose with a diameter of 1.6 cm is used to fill a pool (circular in...
A hose with a diameter of 1.6 cm is used to fill a pool (circular in shape) of 6 m in diameter. How long will it take for the water in the pool to reach a depth of 1.4 m, knowing that the water flows at a speed of 0.40 m/s? *Demonstrate all algebraic procedures*
air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm...
air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm and 25 cm at entrance and exit. if the velocity of air at the entrance is 15 m/s and leaving the diffuser at 1.5 m/s. determine a.) mass rate of air b.) density of air at the exit
A cylindrical shaped potato with length 2 cm and a diameter of 0.5 cm was dried...
A cylindrical shaped potato with length 2 cm and a diameter of 0.5 cm was dried at a temperature of 65 o C in a convective oven for 24 h, if the surface temperature of the potato remained at 62 o C throughout the drying operation, describe the different changes that occurs during the constant and falling rate periods
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the Mach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.
A 10-cm diameter solid metal ball falls through the air at its terminal velocity of 39.3...
A 10-cm diameter solid metal ball falls through the air at its terminal velocity of 39.3 m/s. a) What would the new terminal velocity be if the mass of the ball were doubled, while the diameter and all other physical properties of the ball remained unchanged. b) What would the new terminal velocity be if the diameter of the ball were doubled, while the mass and all other physical properties of the ball remained the same as the original? c)...
Figure is an edge-on view of a 14 cm diameter circular loop rotating in a uniform...
Figure is an edge-on view of a 14 cm diameter circular loop rotating in a uniform 3.8×10-2 T magnetic field. I solved part a by using  φ= B A cos θ = Bπr2 cosθ = (3.8 x 10-2) π (.07)2cos (0 degrees)= 5.8 x 10-4 Wb and got correct answer,  but having trouble finding the right answer for part B.  I used same equation for part B and used cos (30)= got wrong answer.  Is there another equation for finding the answer with the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT