In: Statistics and Probability
The following payoff table shows profit for a decision analysis problem with two decision alternatives and three states of nature.
| Decision Alternative  | 
States of Nature | ||
|---|---|---|---|
| 
 s1  | 
 s2  | 
 s3  | 
|
| 
 d1  | 
240 | 90 | 15 | 
| 
 d2  | 
90 | 90 | 65 | 
Suppose that the decision maker obtained the probabilities
P(s1) = 0.65, P(s2) = 0.15,
and
P(s3) = 0.20.
Use the expected value approach to determine the optimal decision.
EV(d1) = EV(d2) = The optimal decision is ? d₁ d₂
| Decision alternative | s1 | s2 | s3 | 
| d1 | 240 | 90 | 15 | 
| d2 | 90 | 90 | 65 | 
| P(s1)= | 0.65 | 
| P(s2)= | 0.15 | 
| P(s3)= | 0.2 | 
expected value for decision 1 (d1)=  
           
240*0.65+90*0.15+15*0.2=      
    172.5
          
           
   
expected value for decision 2 (d2) =   
           
90*0.65+90*0.15+65*0.2=      
    85
since,    E(d1)>E(d2), recommeded decision is
d1         
           
its expected value=   172.5