In: Computer Science
Suppose that all the numbers in an array are located in an interval [0,12], and we need to find the largest element with accuracy ε = 0.8. How many iterations will you need if we use the quantum optimization algorithm? How many times do we need to apply Grover's algorithm? Trace the quantum optimization algorithm for the case when the actual largest element is a5 = 3.14
#include<iostream>
using namespace std;
// A structure to store an element and its current count
struct eleCount
{
int e; // Element
int c; // Count
};
void moreThanNdK(int arr[], int n, int k)
{
// k must be greater than 1 to get some output
if (k < 2)
return;
struct eleCount temp[k-1];
for (int i=0; i<k-1; i++)
temp[i].c = 0;
for (int i = 0; i < n; i++)
{
int j;
/* If arr[i] is already present in
the element count array, then increment its count */
for (j=0; j<k-1; j++)
{
if (temp[j].e == arr[i])
{
temp[j].c += 1;
break;
}
}
/* If arr[i] is not present in temp[] */
if (j == k-1)
{
int l;
/* If there is position available in temp[], then place
arr[i] in the first available position and set count as 1*/
for (l=0; l<k-1; l++)
{
if (temp[l].c == 0)
{
temp[l].e = arr[i];
temp[l].c = 1;
break;
}
}
/* If all the position in the temp[] are filled, then
decrease count of every element by 1 */
if (l == k-1)
for (l=0; l<k; l++)
temp[l].c -= 1;
}
}
for (int i=0; i<k-1; i++)
{
// Calculate actual count of elements
int ac = 0; // actual count
for (int j=0; j<n; j++)
if (arr[j] == temp[i].e)
ac++;
// If actual count is more than n/k, then print it
if (ac > n/k)
cout << "Number:" << temp[i].e
<< " Count:" << ac << endl;
}
}
int main()
{
cout << "First Test\n";
int arr1[] = {4, 5, 6, 7, 8, 4, 4};
int size = sizeof(arr1)/sizeof(arr1[0]);
int k = 3;
moreThanNdK(arr1, size, k);
cout << "\nSecond Test\n";
int arr2[] = {4, 2, 2, 7};
size = sizeof(arr2)/sizeof(arr2[0]);
k = 3;
moreThanNdK(arr2, size, k);
cout << "\nThird Test\n";
int arr3[] = {2, 7, 2};
size = sizeof(arr3)/sizeof(arr3[0]);
k = 2;
moreThanNdK(arr3, size, k);
return 0;
}