Question

In: Mechanical Engineering

Air is expanded isentropically in an adiabatic turbine, to produce 135 kW of power. If the...

Air is expanded isentropically in an adiabatic turbine, to produce 135 kW of power. If the mass flow rate is 0.75 kg/s, and the air at the exit is 500 K and 305 kPa, then what is the temperature and pressure at the inlet of the turbine?

(a) The temperature is K.

(b) The pressure is kPa.

NOTE: Do NOT approximate the air as having a constant specific heat.

Solutions

Expert Solution


Related Solutions

Thermodynamics Air at 3.5 MPa and 500°C is expanded in an adiabatic gas turbine to 0.2...
Thermodynamics Air at 3.5 MPa and 500°C is expanded in an adiabatic gas turbine to 0.2 MPa. Assume that the process is reversible. Changes in KE and PE may be neglected and the average temperature of the gases is 550 K. (a) Create a schematic representation of the equipment. (b) Represent the process on a T-s diagram. (c) Determine the polytropic exponent. (d) Determine the change in entropy for this expansion process
Steam at 50 Bar and 500oC is expanded isentropically through a single stage turbine to a...
Steam at 50 Bar and 500oC is expanded isentropically through a single stage turbine to a condenser operating at 1 bar. Assuming the steam at turbine exit is Dry Saturated Steam and the turbine is required to produce a power output of 5.33MW. Calculate the required steam mass flow rate in kg/s to 2 decimal places.
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with...
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.92. The steam enters at 3 MPa and 400 C and leaves at 30 kPa. Determine how much power the turbine is producing. Express your result in kW. (Sol: 1649 kW)
A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine...
A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine at 2400 kPa and 500oC and exhausts from the turbine at 20 kPa as saturated vapor. What is the flow rate of steam run through the turbine, and what is the turbine efficiency? Draw the process on the P-H diagram.
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 120 kPa. What...
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 120 kPa. What is the isentropic efficiency of this turbine if the steam is exhausted as a saturated vapor?
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees...
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees C(state 1), the steam exits at 15kPa with quality of 0.95(state 2 actual). Find a) isentropic power output of the turbine using listed pressures, b) actual power output of the turbine, c) isentropic efficiency of the turbine, d) s2-s1
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees...
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees C(state 1), the steam exits at 15kPa with quality of 0.95(state 2 actual). Find a) isentropic power output of the turbine using listed pressures, b) actual power output of the turbine, c) isentropic efficiency of the turbine, d) s2-s1
The following heat engines produce power of 95,000 kW. Determine in each case the rates at...
The following heat engines produce power of 95,000 kW. Determine in each case the rates at which heat is absorbed from the hot reservoir and discarded to the cold reservoir. a. A carnot engine operates between heat reservoir at 750K and 300K. b. A practical engine operates between the same heat reservoirs but with a thermal efficiency n = 0.35 *Please show are the formulas and steps how to do this problem please.
. Air enters the compressor of a gas turbine power plant operating on Brayton cycle at...
. Air enters the compressor of a gas turbine power plant operating on Brayton cycle at 14.5 psia and 540° R. The pressure ratio across the turbine and compressor is same, which is equal to 6. Assume that the compressor work as 0.4 times the turbine work. Take K=1.4 a) Draw the T-S diagram of the cycle. [2] b) Calculate the maximum temperature in the cycle. [3] c) Calculate the cycle efficiency
Steam enters an adiabatic turbine at 500C and 4.0MPa and 80m/s. The steam leaves the turbine...
Steam enters an adiabatic turbine at 500C and 4.0MPa and 80m/s. The steam leaves the turbine as saturated liquid-vapor mixture at 30kPa, quality of 92% and 50m/s. The mass flow rate of steam through the turbine is 12kg/s. (10 pts) Determine change in kinetic energy (10 pts) Determine the rate of work (power) done by the steam in the turbine, in kW (neglect potential energy change). (10 pts) Determine the flow area at the entrance to the turbine, in m2....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT