Question

In: Physics

A singly ionized particle (charge =+e) beam of various isotopes moving at various speeds through a region of electric and magnetic fields, with E = 1000 V / m and B = 0.5T .

 

A singly ionized particle (charge =+e) beam of various isotopes moving at various speeds through a region of electric and magnetic fields, with E = 1000 V / m and B = 0.5T .

a) what should be the angle between these crossed fields so that they act like a velocity selector? Draw a picture indicating field directions.

b) Explain clearly how this setup selects a single velocity among many within the beam.

c) Calculate the value of this selected speed.

d)Draw another diagram showing how you would separate the various isotopes (i.e. describe mass spectrometer)

Solutions

Expert Solution


Related Solutions

A particle with charge q= 7.80?C is moving with velocity v= -3.8 E 3 j [m/s]....
A particle with charge q= 7.80?C is moving with velocity v= -3.8 E 3 j [m/s]. The magnetic force is measured to be F= (+7.60 E -3 i - 5.20 E -3 k) [N]. Calculate the components of the magnetic field Can there be components of the magnetic field that are not determined by the Force? Calculate the vector dot product F*B, what is the angle between F and B?
Problem 1: The energy E of a particle of mass m moving at speed v is...
Problem 1: The energy E of a particle of mass m moving at speed v is given by: E2 = m2 c4 + p2 c2 (1) p=γmv (2) 1 γ = 1−v2/c2 (3) This means that if something is at rest, it’s energy is mc2. We can define a kinetic energy to be the difference between the total energy of an object given by equation (1) and the rest energy mc2. What would be the kinetic energy of a baseball...
A charged particle with negative charge Q=-5C is moving with the speed v=400 m/s and the...
A charged particle with negative charge Q=-5C is moving with the speed v=400 m/s and the direction of the velocity vector is at 60 degrees above horizontal as shown in the figure below. The particle moves in the presence of the magnetic field B produced by the long horizontal wire with current I=100 A flowing to the right. A.)Find the magnitude of the magnetic field B at the location of the particle, 10 cm above the wire. Give your answer...
A) Given a vector electric field: E i = x̅100e−γ z V/m                       Find the associated magnetic...
A) Given a vector electric field: E i = x̅100e−γ z V/m                       Find the associated magnetic field. B) If this field is normally incident on a uniform lossy medium with Er = 3.0, tan δ = 0.1, and μ = μ0    initially propagating in air, find bot h the reflection and transmission coefficients.
Proton moving with V=2*106 m/s speed in a magnetic field of B=3T is under the effect...
Proton moving with V=2*106 m/s speed in a magnetic field of B=3T is under the effect of 4*10-12 N force. What is the angle between the magnetic field and the velocity of the proton.
At time t=0 a positively charged particle of mass m=5.95 g and charge q=10.8 μC is injected into the region of the uniform magnetic
  At time t=0 a positively charged particle of mass m=5.95 g and charge q=10.8 μC is injected into the region of the uniform magnetic B=B k and electric E=−E k fields with the initial velocity v=v0 i. The magnitudes of the fields: B=0.43 T, E=722 V/m, and the initial speed v0=3.42 m/s are given. Find at what time t, the particle's speed would become equal to v(t)=4.14·v0: t =____ seconds.  
In each of six situations, a particle (mass m, charge q) is located at a point where the electric field has magnitude E.
In each of six situations, a particle (mass m, charge q) is located at a point where the electric field has magnitude E. No other forces act on the particles. Rank them in order of the magnitude of the particle’s acceleration, from largest to smallest.
In the Bainbridge mass spectrometer, the magnetic field magnitude in the velocity selector is 0.650 T, and ions having speed of 1.82 x 106 m/s pass through undeflected. (A) What is the electric field magnitude in the velocity selector; and (B) If the sepa
In the Bainbridge mass spectrometer, the magnetic field magnitude in the velocity selector is 0.650 T, and ions having speed of 1.82 x 106 m/s pass through undeflected.(A) What is the electric field magnitude in the velocity selector; and(B) If the separation of the plates is 5.20 mm, what is the potential difference between plates P and Px?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT