In: Math
Using the information from above, with p′=0.714, q′=0.286, and n=140, what is the 90% confidence interval for the proportion of the population who use public transportation?
z0.10 | z0.05 | z0.025 | z0.01 | z0.005 |
---|---|---|---|---|
1.282 | 1.645 | 1.960 | 2.326 | 2.576 |
Use the table of common z-scores above.
Solution :
Given that,
n = 140
= 0.714
q′ = 0.286
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.645 * (((0.714 * 0.286) / 140) = 0.0628
A 90 % confidence interval for population proportion p is ,
- E < P < + E
0.714 - 0.0628 < p < 0.714 + 0.0628
0.6512 < p < 0.7768
The 90% confidence interval for the population proportion p is : 0.6512 and 0.7768