In: Statistics and Probability
Determine the limits of the 90% confidence interval for , given that n = 455; and p = 0.11.
Solution :
Given that,
n = 455
= 0.11
1 - = 1 - 0.11 = 0.89
At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.645 * (((0.11 * 0.89) / 455) = 0.0241
A 90 % confidence interval for population proportion p is ,
- E < P < + E
0.11 - 0.0241 < p < 0.11 + 0.0241
0.0859 < p < 0.1341
The 90% confidence interval for the population proportion p is : ( 0.0859 , 0.1341)