Question

In: Electrical Engineering

can explain how solve these #Electromagnetism qusitons ------Q1 Point charges Q1 = 100 µC and Q2...

can explain how solve these #Electromagnetism qusitons

------Q1

Point charges Q1 = 100 µC and Q2 = 0.12 µC are placed at (0.03, 0.08, −0.02) and (−0.03, 0.01, 0.04), respectively. Determine the force on Q1

------Q2

Convert ? = 10?−??? − 3??? from cylindrical to Cartesian and evaluate it at (3, 4, 5).

------Q3

Determine the gradient of ? = cos? + sin? + sin2 ? and evaluate the gradient at (2, π/2, π).

------Q4

For the vector field ? = 24?cos??? + 12?2?? + 18???, verify the divergence theorem over the region defined by 0 ≤ ? ≤ 1, −1 ≤ ? ≤ 2, 0 ≤ ? ≤ 2?.

Solutions

Expert Solution

Please don't forget to upvote, Thank you


Related Solutions

Point charges q1 = 43 µC and q2 = −21 µC are placed 3.5 m apart....
Point charges q1 = 43 µC and q2 = −21 µC are placed 3.5 m apart. Where must q3 = 24 µC be placed (on the x-axis, in m) so that the net force on it is zero? (Assume that q1 is at x = 0 and q2 is at x = 3.5 m.)
Two charges Q1( +2.00 µC) and Q2( +2.00 µC) are fixed symmetrically along the x-axis at...
Two charges Q1( +2.00 µC) and Q2( +2.00 µC) are fixed symmetrically along the x-axis at x = ± 3.00 cm. How much work must be done to assemble these charges if they are initially infinitely far apart? For this configuration, calculate the electrical potential difference between the origin and the point P, which is located on the y-axis 4.00 cm above the origin. Now a third charge Q3( -2.00 µC) is fixed at point P. What is the electrostatic...
Q1 is a -50 µC charge is located at the origin. Q2 is a +20 µC...
Q1 is a -50 µC charge is located at the origin. Q2 is a +20 µC charge is located on the y axis at y = 4 m. Consider a point P located on the x axis at x = 2 m.What is the magnitude of electric field due to Q1 at the point P?What are the x and y components of the electric field due to Q1 at the point P? Be sure to include direction.What is the magnitude...
Three particles, charge q1 = +12 µC, q2 = -19 µC, and q3 = +31 µC,...
Three particles, charge q1 = +12 µC, q2 = -19 µC, and q3 = +31 µC, are positioned at the vertices of an isosceles triangle as shown in the figure. If a = 10 cm and b = 5.7 cm, how much work must an external agent do to exchange the positions of (a)  q1 and q3 and, instead, (b)  q1 and q2?
​In the diagram below, there are three collinear point charges q1, q2 and q3
In the diagram below, there are three collinear point charges q1, q2 and q3. The distance between q1 and q2 is the same as that between q2 and q3. You will be asked to rank the Coulomb force on q1 due to q2 and q3.Part A Rank the six combinations of electric charges on the basis of the electric force acting on q1. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order...
Point charges of 23.0 µC and 35.0 µC are placed 0.550 m apart. At what point...
Point charges of 23.0 µC and 35.0 µC are placed 0.550 m apart. At what point (in m) along the line between them is the electric field zero? What (in N/C) is the electric field halfway between them?
Two positive point charges q1 = 6.0nC and q2 = 9.0nC are separated in a vacuum...
Two positive point charges q1 = 6.0nC and q2 = 9.0nC are separated in a vacuum by a distance of 5.36m. The spot on the line between the charges measured from the charge q1 where the net electric field is zero is
Three point charges are on the x-axis: q1 at the origin, q2 at 3 m, and...
Three point charges are on the x-axis: q1 at the origin, q2 at 3 m, and q3 at 7 m. A) Find the potential at the point (0, 4 m) if q1 = q2 = q3 = 2 µC. The Coulomb constant is 8.99 × 109 N · m2 /C 2 Answer in units of kV. B) Find the potential at the point (0, 4 m) if q1 = q2 = 2 µC and q3 = −2 µC . Answer...
Two point charges, Q1 = 3.0 μC and Q2 = -1.7 μC , are placed on...
Two point charges, Q1 = 3.0 μC and Q2 = -1.7 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 3.0 cm. At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Express your answer using two significant figures. If there is more than one answer, enter your answers in ascending order separated by commas....
point charges are q1=8 μC, q2=-7 μC Find the electric field due to these charges at...
point charges are q1=8 μC, q2=-7 μC Find the electric field due to these charges at the origin: (o) (q1)<------10cm------o----------10cm---------->(q2)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT