Question

In: Physics

Point charges q1 = 43 µC and q2 = −21 µC are placed 3.5 m apart....

Point charges q1 = 43 µC and q2 = −21 µC are placed 3.5 m apart. Where must q3 = 24 µC be placed (on the x-axis, in m) so that the net force on it is zero? (Assume that q1 is at x = 0 and q2 is at x = 3.5 m.)

Solutions

Expert Solution

Charge is positive and charge is negative, and magnitude of  

For the net force on to be zero, repulsion from charge on ( along the positive X-axis) must be equal to attraction from charge on ( along negative X-axis).

Hence the charge must be placed on the right side of charge .

Let the charge is at a distance from charge , means charge is at a distance from charge

and  

Net force on charge is zero,

Solving above quadratic equation

Charge must be placed at a distance to the right of charge on the X-axis.

Charge must be placed at a distance to the right of charge ( on the X-axis.).

-----------------------------------


Related Solutions

Point charges of 23.0 µC and 35.0 µC are placed 0.550 m apart. At what point...
Point charges of 23.0 µC and 35.0 µC are placed 0.550 m apart. At what point (in m) along the line between them is the electric field zero? What (in N/C) is the electric field halfway between them?
Point charges of 21.0 µC and 50.0 µC are placed 0.250 m apart. (a) At what...
Point charges of 21.0 µC and 50.0 µC are placed 0.250 m apart. (a) At what point (in m) along the line between them is the electric field zero? (b) What (in N/C) is the electric field halfway between them? (Enter the magnitude.)
Point charges of 6.75 µC and −4.00 µC are placed 0.300 m apart. (Assume the negative...
Point charges of 6.75 µC and −4.00 µC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? m to the right of the −4.00 µC charge (b) What if both charges are positive? m to the right of the  4.00 µC charge
Two point charges q1 and q2 are 1.30 m apart, and their total charge is 22.9...
Two point charges q1 and q2 are 1.30 m apart, and their total charge is 22.9 µC. If the force of repulsion between them is 0.651 N, what are magnitudes of the two charges? If one charge attracts the other with a force of 0.268N, what are the magnitudes of the two charges if their total charge is also 22.9 nC? The charges are at a distance of 1.30m
1. Two point charges q1 and q2 are 2.90 m apart, and their total charge is...
1. Two point charges q1 and q2 are 2.90 m apart, and their total charge is 20 µC. Note that you may need to solve a quadratic equation to reach your answer. (a) If the force of repulsion between them is 0.090 N, what are the two charges (in µC)? smaller value = larger value = (b) If one charge attracts the other with a force of 0.509 N, what are the two charges (in µC)? smaller value = larger...
can explain how solve these #Electromagnetism qusitons ------Q1 Point charges Q1 = 100 µC and Q2...
can explain how solve these #Electromagnetism qusitons ------Q1 Point charges Q1 = 100 µC and Q2 = 0.12 µC are placed at (0.03, 0.08, −0.02) and (−0.03, 0.01, 0.04), respectively. Determine the force on Q1 ------Q2 Convert ? = 10?−??? − 3??? from cylindrical to Cartesian and evaluate it at (3, 4, 5). ------Q3 Determine the gradient of ? = cos? + sin? + sin2 ? and evaluate the gradient at (2, π/2, π). ------Q4 For the vector field ?...
Two point charges, Q1 = 3.0 μC and Q2 = -1.7 μC , are placed on...
Two point charges, Q1 = 3.0 μC and Q2 = -1.7 μC , are placed on the x axis. Suppose that Q2 is placed at the origin, and Q1 is placed at the coordinate x1 = − 3.0 cm. At what point(s) along the x axis is the electric field zero? Determine the x-coordinate(s) of the point(s). Express your answer using two significant figures. If there is more than one answer, enter your answers in ascending order separated by commas....
Two charges, +5 µC and +17 µC, are fixed 1 m apart, with the second one...
Two charges, +5 µC and +17 µC, are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of the net force (in N) on a −7 nC charge when placed at the following locations. (a) halfway between the two magnitude N direction (b) half a meter to the left of the +5 µC charge magnitude N direction (c) half a meter above the +17 µC charge in a direction perpendicular to the line...
Two charges, +9 µC and +15 µC, are fixed 1 m apart, with the second one...
Two charges, +9 µC and +15 µC, are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of the net force (in N) on a −8 nC charge when placed at the following locations. (a) halfway between the two magnitude ______________ N (b) half a meter to the left of the +9 µC charge magnitude __________ N (c) half a meter above the +15 µC charge in a direction perpendicular to the line...
Two charges Q1( +2.00 µC) and Q2( +2.00 µC) are fixed symmetrically along the x-axis at...
Two charges Q1( +2.00 µC) and Q2( +2.00 µC) are fixed symmetrically along the x-axis at x = ± 3.00 cm. How much work must be done to assemble these charges if they are initially infinitely far apart? For this configuration, calculate the electrical potential difference between the origin and the point P, which is located on the y-axis 4.00 cm above the origin. Now a third charge Q3( -2.00 µC) is fixed at point P. What is the electrostatic...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT