Question

In: Physics

1. To construct a nonmechanical water meter, a 0.500-T magnetic field is placed across the pipe...

1. To construct a nonmechanical water meter, a 0.500-T magnetic field is placed across the pipe supplying water to a home, and the Hall voltage between the ends of a pipe diameter perpendicular to the field is measured. This works, because water contains ions, which are charged particles and move at the flow speed of the water.

Find the flow rate, in cubic meters per second, through a 2.2-cm diameter pipe if the Hall voltage is 75 mV.

What would be the Hall voltage, in volts, for the same flow rate through a 9.5-cm-diameter pipe with the same field applied?

Solutions

Expert Solution

Edited version


Related Solutions

A 20-cmcm-diameter circular loop of wire is placed in a 0.64-T magnetic field. a) When the...
A 20-cmcm-diameter circular loop of wire is placed in a 0.64-T magnetic field. a) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop? Express your answer to two significant figures and include the appropriate units. b) The plane of the loop is rotated until it makes a 45  angle with the field lines. What is the angle in the equation ΦB = BAcos⁡θ for this situation? Express your answer using...
   A flat coil of wire is placed in a uniform magnetic field that is in the...
   A flat coil of wire is placed in a uniform magnetic field that is in the y direction. (i) The magnetic flux through the coil is maximum if the coil is (a) in the xy plane(b) in either the xy or the yz plane (c) in the xz plane (d) in any orientation, because it is constant. (ii) For what orientation is the flux zero? Choose from the same possibilities.
A sphere made of a linear magnetic material with Xm is placed in a uniform magnetic field B0.
A sphere made of a linear magnetic material with Xm is placed in a uniform magnetic field B0. Determine the field inside the sphere. Hint: The external field will magnetize the sphere. This magnetization will create another uniform magnetic field inside the sphere which will cause an additional magnetization. Thus, you need to find a series expression.
A capacitor is connected to a battery and placed in a magnetic field (-z direction) to...
A capacitor is connected to a battery and placed in a magnetic field (-z direction) to form a velocity selector. A charge moving at 3,479.6 m/s is not deflected by the velocity selector. If the voltage of the battery is 7 volts and the distance between the sheets is 0.3 meters, what is the amount of the magnetic field in milli-Tesla?
a) In the middle of a coil, the magnetic field induction is B0 = 0.5 T....
a) In the middle of a coil, the magnetic field induction is B0 = 0.5 T. Determine the magnetic field induction B along the axis of the coil at its edge. b) In the middle of a capacitor, the electric field intensity is E0 = 1000 V/m. Determine the electric field intensity E between the capacitor plates at the capacitor edge
A magnetic field has a magnitude of 1.2e-3 T, and an electric field has a magnitude...
A magnetic field has a magnitude of 1.2e-3 T, and an electric field has a magnitude of 5.1e3 N/C. Both fields point in the same direction. A positive -1.8 microC moves at a speed of 3.5e6 m/s in a direction that is perpendicular to both fields. Determine the magnitude of the net force that acts on the charge.
1.a. A 0.5 m wire moves perpendicular to a .02 T magnetic field at a speed...
1.a. A 0.5 m wire moves perpendicular to a .02 T magnetic field at a speed of 25 m’s. Find the induced e.m.f. in the wire. 1.b. A circular coil of wire has 100 turns, an internal area of 0.25 m2. A magnetic field inside the coil changes form 0.02 T to 0.08 T in 0.001 seconds. Find the induced e.m.f. in the coil. 1.c Find the magnetic flux inside a coil that has a magnetic field of 0.02 T...
1.a. A 0.5 m wire moves perpendicular to a .02 T magnetic field at a speed...
1.a. A 0.5 m wire moves perpendicular to a .02 T magnetic field at a speed of 25 m’s. Find the induced e.m.f. in the wire. 1.b. A circular coil of wire has 100 turns, an internal area of 0.25 m2. A magnetic field inside the coil changes form 0.02 T to 0.08 T in 0.001 seconds. Find the induced e.m.f. in the coil. 1.c Find the magnetic flux inside a coil that has a magnetic field of 0.02 T...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.680 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.242 s. 1.What is the direction of the induced current flow as the loop begins to rotate? 2.What is the average induced emf in the loop during this rotation?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT