In: Statistics and Probability
Freud experimented with randomly selected rats and recorded the number of hours it took mice to learn to tap on a lever to get water. Let ?̅ = male mice. Here are his findings:
Hours to learn how to tap on lever
Female Rats - 47.9, 69.2, 46.2, 56.3, 57.6, 55.5, 60.1, 65.8
Male Rats - 42.5, 70.8, 55.1, 50.4, 65.0, 66.9, 64.2, 64.7
a) State the conditions and verify they are met.
b) Find the indicated values for a 87% confidence interval of the difference in hours to learn. Interpret your results.
c) Now perform an appropriate hypothesis test, and state your conclusion.
a)
Population variances are equal and unknown.
| Sample 1: | ||
| Sample Standard deviation, | s₁ = | 7.906552 | 
| Sample size, | n₁ = | 8 | 
| Sample 2: | ||
| Sample Standard deviation, | s₂ = | 9.646465 | 
| Sample size, | n₂ = | 8 | 
| α = | 0.05 | 
Null and alternative hypothesis:  
Hₒ : σ₁ = σ₂  
H₁ : σ₁ ≠ σ₂  
Test statistic:  
F = s₁² / s₂² = 7.90655243633852² / 9.64646493355389² =
   0.6718
Degree of freedom:  
df₁ = n₁-1 =    7
df₂ = n₂-1 =    7
Critical value(s):  
Lower tailed critical value, FL = F.INV(0.13/2, 7, 7) =
   0.2953
Upper tailed critical value, FU = F.INV(1-0.13/2, 7, 7) =
   3.3860
P-value :  
P-value = 2*F.DIST.RT(0.6718, 7, 7) =    1.3873
Conclusion:  
As p-value > α, we fail to reject the null
hypothesis.  
b)
Degree of freedom, DF=   n1+n2-2 =   
14          
   
t-critical value =    t α/2 =   
1.6087   (excel formula =t.inv(α/2,df)  
       
          
           
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    8.8195  
           
          
           
std error , SE =    Sp*√(1/n1+1/n2) =   
4.4098          
   
margin of error, E = t*SE =    1.6087  
*   4.4098   =  
7.0938  
          
           
difference of means =    x̅1-x̅2 =   
57.3250   -   59.950   =  
-2.6250
confidence interval is       
           
   
Interval Lower Limit=   (x̅1-x̅2) - E =   
-2.6250   -   7.0938   =  
-9.7188
Interval Upper Limit=   (x̅1-x̅2) + E =   
-2.6250   +   7.0938   =  
4.4688
3)
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 ╪   0  
           
   
          
           
   
Level of Significance ,    α =   
0.13          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   57.33  
           
   
standard deviation of sample 1,   s1 =   
7.91          
       
size of sample 1,    n1=   8  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   59.95  
           
   
standard deviation of sample 2,   s2 =   
9.65          
       
size of sample 2,    n2=   8  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
57.3250   -   60.0   =  
-2.62  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    8.8195  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
4.4098          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -2.6250  
-   0   ) /    4.41  
=   -0.595
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
14          
       
t-critical value , t* =       
1.6087   (excel formula =t.inv(α/2,df)  
           
Decision:   | t-stat | < | critical value |, so, Do
not Reject Ho          
           
p-value =        0.561162  
(excel function: =T.DIST.2T(t stat,df) )  
           
Conclusion:     p-value>α , Do not reject null
hypothesis          
           
          
           
   
There is not enough evidence to prove that male and female mice
differe.
Please revert back in case of any doubt.
Please upvote. Thanks in advance.