In: Economics
Assume that a competitive firm has the total cost function: TC=1q3−40q2+720q+2000
Suppose the price of the firm's output (sold in integer units) is $700 per unit.
Using tables (but not calculus) to find a solution, what is the total profit at the optimal output level? Please specify your answer as an integer.
Since you have asked for not using calculus but only table, here i have constructed the following table:
Price | Quantity | Revenue | Total Cost | Profit |
700 | 1 | 700 | 2681 | -1981 |
700 | 2 | 1400 | 3288 | -1888 |
700 | 3 | 2100 | 3827 | -1727 |
700 | 4 | 2800 | 4304 | -1504 |
700 | 5 | 3500 | 4725 | -1225 |
700 | 6 | 4200 | 5096 | -896 |
700 | 7 | 4900 | 5423 | -523 |
700 | 8 | 5600 | 5712 | -112 |
700 | 9 | 6300 | 5969 | 331 |
700 | 10 | 7000 | 6200 | 800 |
700 | 11 | 7700 | 6411 | 1289 |
700 | 12 | 8400 | 6608 | 1792 |
700 | 13 | 9100 | 6797 | 2303 |
700 | 14 | 9800 | 6984 | 2816 |
700 | 15 | 10500 | 7175 | 3325 |
700 | 16 | 11200 | 7376 | 3824 |
700 | 17 | 11900 | 7593 | 4307 |
700 | 18 | 12600 | 7832 | 4768 |
700 | 19 | 13300 | 8099 | 5201 |
700 | 20 | 14000 | 8400 | 5600 |
700 | 21 | 14700 | 8741 | 5959 |
700 | 22 | 15400 | 9128 | 6272 |
700 | 23 | 16100 | 9567 | 6533 |
700 | 24 | 16800 | 10064 | 6736 |
700 | 25 | 17500 | 10625 | 6875 |
700 | 26 | 18200 | 11256 | 6944 |
700 | 27 | 18900 | 11963 | 6937 |
700 | 28 | 19600 | 12752 | 6848 |
700 | 29 | 20300 | 13629 | 6671 |
700 | 30 | 21000 | 14600 | 6400 |
700 | 31 | 21700 | 15671 | 6029 |
700 | 32 | 22400 | 16848 | 5552 |
700 | 33 | 23100 | 18137 | 4963 |
700 | 34 | 23800 | 19544 | 4256 |
700 | 35 | 24500 | 21075 | 3425 |
700 | 36 | 25200 | 22736 | 2464 |
700 | 37 | 25900 | 24533 | 1367 |
700 | 38 | 26600 | 26472 | 128 |
700 | 39 | 27300 | 28559 | -1259 |
700 | 40 | 28000 | 30800 | -2800 |
700 | 41 | 28700 | 33201 | -4501 |
700 | 42 | 29400 | 35768 | -6368 |
700 | 43 | 30100 | 38507 | -8407 |
700 | 44 | 30800 | 41424 | -10624 |
700 | 45 | 31500 | 44525 | -13025 |
Total Revenue = Price * Quantity
Profit = Total Revenue - Total Cost
We can see that the Profit is maximized at units 26
Let us verify this using calculus
Equating it to zero
Hence, the firm will produce 26 units