In: Economics
Q3. Assume that a competitive firm has the total cost function: TC=1q3-40q2+890q+1800 Suppose the price of the firm's output (sold in integer units) is $600 per unit. Using tables (but not calculus) to find a solution, what is the total profit at the optimal output level? Please specify your answer as an integer.
ANSWER:
QUANTITY (Q) | TOTAL COST (Q^3 - 40Q^2 + 890Q + 1800) | PRICE |
1 | = (1^3 - 40 * (1) ^ 2 + 890 * 1 + 1800 = 2651 | 600 |
2 | = (2^3 - 40 * (2) ^ 2 + 890 * 2 + 1800 = 3428 | 1200 |
3 | = (3^3 - 40 * (3) ^ 2 + 890 * 3 + 1800 = 4137 | 1800 |
4 | = (4^3 - 40 * (4) ^ 2 + 890 * 4 + 1800 = 4784 | 2400 |
5 | = (5^3 - 40 * (5) ^ 2 + 890 * 5 + 1800 = 5375 | 3000 |
6 | = (6^3 - 40 * (6) ^ 2 + 890 * 6 + 1800 = 5916 | 3600 |
7 | = (7^3 - 40 * (7) ^ 2 + 890 * 7 + 1800 = 6413 | 4200 |
8 | = (8^3 - 40 * (8) ^ 2 + 890 * 8 + 1800 = 6872 | 4800 |
9 | = (9^3 - 40 * (9) ^ 2 + 890 * 9 + 1800 = 7299 | 5400 |
10 | = (10^3 - 40 * (10) ^ 2 + 890 * 10 + 1800 = 7700 | 6000 |
11 | = (11^3 - 40 * (11) ^ 2 + 890 * 11 + 1800 = 8081 | 6600 |
12 | = (12^3 - 40 * (12) ^ 2 + 890 * 12 + 1800 = 8448 | 7200 |
13 | = (13^3 - 40 * (13) ^ 2 + 890 * 13 + 1800 = 8807 | 7800 |
14 | = (14^3 - 40 * (14) ^ 2 + 890 * 14 + 1800 = 9164 | 8400 |
15 | = (15^3 - 40 * (15) ^ 2 + 890 * 15 + 1800 = 9525 | 9000 |
16 | = (16^3 - 40 * (16) ^ 2 + 890 * 16 + 1800 = 9896 | 9600 |
17 | = (17^3 - 40 * (17) ^ 2 + 890 * 17 + 1800 = 10283 | 10200 |
18 | = (18^3 - 40 * (18) ^ 2 + 890 * 18 + 1800 = 10692 | 10800 |
19 | = (19^3 - 40 * (19) ^ 2 + 890 * 19 + 1800 = 11129 | 11400 |
20 | = (20^3 - 40 * (20) ^ 2 + 890 * 20 + 1800 = 11600 | 12000 |
The optimal output level are the no of units where total price equals or exceeds the total cost.
so in this case it happens when the quantity is 18.
Total profit at 18 units = total price at 18 units - total cost at 18 units = 10,800 - 10,692 = 108
so the total profit is $108.