Question

In: Math

Let (X1, X2) have a bivariate normal distribution with mean vector (µ1, µ2), variance σ 12...

Let (X1, X2) have a bivariate normal distribution with mean vector (µ1, µ2), variance σ 12 for X1 and σ 2 2 for X2 and correlation cor(X1, X2) = ρ.

(a) Write down the joint density f(x1, x2).

(b) Find the marginal distribution f(x1)

(c) Find the conditional distribution f(x1 | x2) and the mean and variance of the conditional distribution.

(d) Obtain the likelihood equations and calculate the MLE for µ1, µ2, σ12 , σ2 2 , ρ.

Solutions

Expert Solution


Related Solutions

Consider the bivariate random vector x = x1 x2 ∼ N2 µ1 µ2 , σ 2...
Consider the bivariate random vector x = x1 x2 ∼ N2 µ1 µ2 , σ 2 1 ρσ1σ2 ρσ1σ2 σ 2 2 1. Expand the matrix form of the density function to get the usual bivariate normal density involving σ1, σ2, ρ and exponential terms in (x1 1µ1) 2 ,(x1 1µ2) and (x2 2µ2) 2 . 2. Explain what happens in the following scenarios: (a) ρ = 0 (b) ρ = 1 (c) ρ = =1 1
Let X1, X2, . . . be independent with common mean µ and common variance σ...
Let X1, X2, . . . be independent with common mean µ and common variance σ 2 , and set Yn = Xn + 2Xn−1 + 3Xn−2. For j ≥ 0, find Cov(Yn,Yn−j).
Let X1, X2, . . . be independent with common mean µ and common variance σ...
Let X1, X2, . . . be independent with common mean µ and common variance σ 2 , and set Yn = Xn + 2Xn−1 + 3Xn−2. For j ≥ 0, find Cov(Yn,Yn−j).
Let x1, x2,x3,and x4 be a random sample from population with normal distribution with mean ?...
Let x1, x2,x3,and x4 be a random sample from population with normal distribution with mean ? and variance ?2 . Find the efficiency of T = 17 (X1+3X2+2X3 +X4) relative to x= x/4 , Which is relatively more efficient? Why?
Make a simulation to verify the following theorem: if X1 ∼ N(µ1, (σ 1)^2 ), X2...
Make a simulation to verify the following theorem: if X1 ∼ N(µ1, (σ 1)^2 ), X2 ∼ N(µ2, (σ2)^ 2 ), and X1 and X2 are independent, then X1 + X2 ∼ N(µ1 + µ2, (σ2)^2+ (σ 2 )^2 ).
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for µ1µ2.
Let X be a random variable which follows normal distribution with mean 12 and variance 0.25....
Let X be a random variable which follows normal distribution with mean 12 and variance 0.25. Then find the following probabilities (a) P( X  ≤ 15 ) (b) P( X  ≤ 17.5 ) (c) P( |X-15| ≤ 3 )                                                  
Sample 1 has n1 independent random variables (X1, X2, ...Xn1) following normal distribution, N(µ1, σ21); and...
Sample 1 has n1 independent random variables (X1, X2, ...Xn1) following normal distribution, N(µ1, σ21); and Sample 2 has n2 independent random variables (Y1, Y2, ...Yn2 ) following normal distribution, N(µ2, σ22). Suppose sample 1 mean is X bar, sample 2 mean is Y bar , and we know n1 ,n2 , σ21 and σ22. Construct a Z statistic (i.e. Z~N(0, 1)) to test H0 : µ1 = µ2.
Let X have Normal distribution with mean 45 and variance 81. If a random sample of...
Let X have Normal distribution with mean 45 and variance 81. If a random sample of size 25 is taken, which of the following is the probability that the sample average is between 41.40 and 45.63?
A normal distribution has a mean of μ = 80 with σ = 12. Find the...
A normal distribution has a mean of μ = 80 with σ = 12. Find the following probabilities. (a) p(X > 83) (b) p(X < 74) (c) p(X < 92) (d) p(71 < X < 89)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT