Question

In: Advanced Math

Proposition 6.18 (Division Algorithm for Polynomials). Let n(x) be a polynomial that is not zero. For...

Proposition 6.18 (Division Algorithm for Polynomials). Let n(x) be a polynomial that is not zero. For every polynomial m(x), there exist polynomials q(x) and r(x) such that

m(x) = q(x)n(x) +r(x)

and either r(x) is zero or the degree of r(x) is smaller than the degree of n(x).

Prove

Solutions

Expert Solution


Related Solutions

In this exercise, we will prove the Division Algorithm for polynomials. Let R[x] be the ring...
In this exercise, we will prove the Division Algorithm for polynomials. Let R[x] be the ring of polynomials with real coefficients. For the purposes of this exercise, extend the definition of degree by deg(0) = −1. The statement to be proved is: Let f(x),g(x) ∈ R[x][x] be polynomials with g(x) ? 0. Then there exist unique polynomials q(x) and r(x) such that f (x) = g(x)q(x) + r(x) and deg(r(x)) < deg(g(x)). Fix general f (x) and g(x). (a) Let...
Let K be a field. Observe that the polynomials in K[x] that are not zero and...
Let K be a field. Observe that the polynomials in K[x] that are not zero and not units are precisely the polynomials of positive degree.
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write...
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write a function integral(A, X1, X2) that takes 3 inputs A, X0 and X1 A as stated above X1 and X2 be any real number, where X1 is the lower limit of the integral and X2 is the upper limit of the integral. Please write this code in Python.
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write...
Let P(x) be a polynomial of degree n and A = [an , an-1,.... ] Write a function integral(A, X1, X2) that takes 3 inputs A, X0 and X1 A as stated above X1 and X2 be any real number, where X1 is the lower limit of the integral and X2 is the upper limit of the integral. Please write this code in Python. DONT use any inbuilt function, instead use looping in Python to solve the question. You should...
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The...
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The polynomial f(x) factors in R[x] as the product of polynomials of degree 1 or 2. 2. The polynomial f(x) has n roots in C (counting multiplicity). In particular, there are non-negative integers r and s satisfying r+2s = n such that f(x) has r real roots and s pairs of non-real conjugate complex numbers as roots. 3. The polynomial f(x) factors in C[x] as...
Given: Polynomial P(x) of degree 6 Given: x=3 is a zero for the Polynomial above List...
Given: Polynomial P(x) of degree 6 Given: x=3 is a zero for the Polynomial above List all combinations of real and complex zeros, but do not consider multiplicity for the zeros.
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Find the lagrange polynomials that approximate f(x) = x3 a ) Find the linear interpolation polynomial...
Find the lagrange polynomials that approximate f(x) = x3 a ) Find the linear interpolation polynomial P1(x) using the nodes x0= -1 and x1 = 0 b) Find the quadratic interpolation polynomial P2(x) using the nodes x0= -1 and x1 = 0 and x2 = 1 c) Find the cubic interpolation polynomial P3(x) using the nodes x0= -1 and x1 = 0 and x2 = 1 and x3=2 d) Find the linear interpolation polynomial P1(x) using the nodes x0= 1...
let α ∈ C be a zero of the polynomial t^3 − 4t + 2 =...
let α ∈ C be a zero of the polynomial t^3 − 4t + 2 = 0 and let R = {a1 + bα + cα^2 : a,b,c ∈ Z}. Show that R is a integral domain and Show that α − 1 and 2α − 1 are units in R. [Hint: what if x = t + 1?
Let f be an irreducible polynomial of degree n over K, and let Σ be the...
Let f be an irreducible polynomial of degree n over K, and let Σ be the splitting field for f over K. Show that [Σ : K] divides n!.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT