Question

In: Math

Customers arrive at a local ATM at an average rate of 14 per hour. Assume the...

Customers arrive at a local ATM at an average rate of 14 per hour. Assume the time between arrivals follows the exponential probability distribution. Determine the probability that the next customer will arrive in the following time frames.

​a) What is the probability that the next customer will arrive within the next 2 ​minutes?

​b) What is the probability that the next customer will arrive in more than 15 ​minutes?

​c) What is the probability that the next customer will arrive between 8 and 13 ​minutes?

Solutions

Expert Solution


Related Solutions

Suppose that customers arrive at a bank at a rate of 10 per hour. Assume that...
Suppose that customers arrive at a bank at a rate of 10 per hour. Assume that the number of customer arrivals X follows a Poisson distribution. A. Find the probability of more than 25 people arriving within the next two hours using the Poisson mass function. B. Find the probability of more than 25 people arriving within the next two hours using the normal approximation to the Poisson. C. Compute the percent relative difference between the exact probability computed in...
Customers arrive at a local grocery store at an average rate of 2 per minute. (a)...
Customers arrive at a local grocery store at an average rate of 2 per minute. (a) What is the chance that no customer will arrive at the store during a given two minute period? (b) Since it is a “Double Coupon” day at the store, approximately 70% of the customers coming to the store carry coupons. What is the probability that during a given two-minute period there are exactly four (4) customers with coupons and one (1) without coupons? (c)...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume that the bouncer waits X (minutes) to card the next student. That is, X is the time between two students arriving at the bar. Then we know that X has approximately an exponential distribution. (a) What is the probability that nobody shows up within the 2 minutes after the previous customer? (b) What is the probability that the next student arrives in the third...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume that the bouncer waits X (minutes) to card the next student. That is, X is the time between two students arriving at the bar. Then we know that X has approximately an exponential distribution. What is the probability that nobody shows up within the 2 minutes after the previous customer? What is the probability that the next student arrives in the third minute, knowing...
Cars arrive at a parking lot at a rate of 20 per hour. Assume that a...
Cars arrive at a parking lot at a rate of 20 per hour. Assume that a Poisson process model is appropriate. Answer the following questions. No derivations are needed but justification of your answers are necessary. What assumptions are necessary to model the arrival of cars as a Poisson process? What is the expected number of cars that arrive between 10:00 a.m and 11:45 a. m? Suppose you walk into the parking lot at 10:15 a.m.; how long, on average,...
Customers arrive at the rate of 100 per hour. The ticket seller averages 30 seconds per...
Customers arrive at the rate of 100 per hour. The ticket seller averages 30 seconds per customer. What is the average customer time in the system?
Customers arrive at a grocery store at an average of 2.2 per minute. Assume that the...
Customers arrive at a grocery store at an average of 2.2 per minute. Assume that the number of arrivals in a minute follows the Poisson distribution. Provide answers to the following to 3 decimal places. Part a) What is the probability that exactly two customers arrive in a minute? Part b) Find the probability that more than three customers arrive in a two-minute period. Part c) What is the probability that at least seven customers arrive in three minutes, given...
Customers arrive at a grocery store at an average of 2.1 per minute. Assume that the...
Customers arrive at a grocery store at an average of 2.1 per minute. Assume that the number of arrivals in a minute follows the Poisson distribution. Provide answers to the following to 3 decimal places. Part a) What is the probability that exactly two customers arrive in a minute? Part b) Find the probability that more than three customers arrive in a two-minute period. Part c) What is the probability that at least seven customers arrive in three minutes, given...
An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the...
An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the average service time for each customer is 4 minutes, and both interarrival times and service times are exponential. What is the arrival rate per minute? What is the servicing rate per minute? What is the servicing rate per hour? What is the traffic intensity? What is the probability that the teller is idle? What is the average number of cars waiting in line for...
Customers arrive at a two pump system at Poisson rate two per hour. An arrival finding...
Customers arrive at a two pump system at Poisson rate two per hour. An arrival finding the system empty is equally likely to enter service with either pump. An arrival finding one customer in the system will enter service with the idle pump. An arrival finding two others in the system will wait in line for the first free pump. An arrival finding three in the system will not enter. Two service times are exponential with rates one per hour...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT