Question

In: Statistics and Probability

Cars arrive at a parking lot at a rate of 20 per hour. Assume that a...

Cars arrive at a parking lot at a rate of 20 per hour. Assume that a Poisson process model is appropriate. Answer the following questions. No derivations are needed but justification of your answers are necessary. What assumptions are necessary to model the arrival of cars as a Poisson process? What is the expected number of cars that arrive between 10:00 a.m and 11:45 a. m? Suppose you walk into the parking lot at 10:15 a.m.; how long, on average, do you have to wait to see a car entering the lot? Assume that the lot opens at 8 a.m. what is the expected time at which the ninth car arrives at the parking lot. What is the expected waiting time between the arrival of the 9th and 10th car? How is the waiting time between the arrival times of 9th and 10th car distributed? Write the density function of the waiting time. As an outsider, you watch the cars entering the parking lot for a half an hour in the morning (between 10 a.m and 10:30 a.m.) and then for a half an hour during the lunch time (between 1 p.m. and 1:30 p.m.). What can you say about the number of cars arriving at the parking lot during the two half hour periods? Suppose the probability that a car will need a handicapped parking spot is 1%, what is the expected number of cars needing handicapped spots between 10:00 am and 11:45 am?

Solutions

Expert Solution


Related Solutions

Vehicles begin to arrive at a parking lot at 6:00am at a rate of 8 per...
Vehicles begin to arrive at a parking lot at 6:00am at a rate of 8 per minute. Due to an accident on the access highway, no vehicles arrive from 6:20 to 6:30am. From 6:30am on, vehicles arrive at the rate of two per minute. The parking lot attendant processes incoming vehicles (collects parking fees) at the rate of four per minute throughout the day. Assuming D/D/1 queuing, draw a queuing (arrival-departure) diagram to present the events described and determine total...
An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the...
An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the average service time for each customer is 4 minutes, and both interarrival times and service times are exponential. What is the arrival rate per minute? What is the servicing rate per minute? What is the servicing rate per hour? What is the traffic intensity? What is the probability that the teller is idle? What is the average number of cars waiting in line for...
Suppose that customers arrive at a bank at a rate of 10 per hour. Assume that...
Suppose that customers arrive at a bank at a rate of 10 per hour. Assume that the number of customer arrivals X follows a Poisson distribution. A. Find the probability of more than 25 people arriving within the next two hours using the Poisson mass function. B. Find the probability of more than 25 people arriving within the next two hours using the normal approximation to the Poisson. C. Compute the percent relative difference between the exact probability computed in...
3. Vehicles begin to arrive to a parking lot at 7:00 AM at a rate of...
3. Vehicles begin to arrive to a parking lot at 7:00 AM at a rate of 2000 veh/hour, but the demand reduces to 1000 veh/hour at 7:30 AM and continues at that rate. The ticketing booth to enter the parking lot can only serve the vehicles at 1000 veh/hour until 7:15 AM, after which the service rate increases to 2000 veh/hour. Assuming D/D/1 queuing, draw a queuing diagram for this situation. Find: a) the time at which the queue clears,...
Customers arrive at a local ATM at an average rate of 14 per hour. Assume the...
Customers arrive at a local ATM at an average rate of 14 per hour. Assume the time between arrivals follows the exponential probability distribution. Determine the probability that the next customer will arrive in the following time frames. ​a) What is the probability that the next customer will arrive within the next 2 ​minutes? ​b) What is the probability that the next customer will arrive in more than 15 ​minutes? ​c) What is the probability that the next customer will...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume that the bouncer waits X (minutes) to card the next student. That is, X is the time between two students arriving at the bar. Then we know that X has approximately an exponential distribution. (a) What is the probability that nobody shows up within the 2 minutes after the previous customer? (b) What is the probability that the next student arrives in the third...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume...
Students arrive at a local bar at a mean rate of 30 students per hour. Assume that the bouncer waits X (minutes) to card the next student. That is, X is the time between two students arriving at the bar. Then we know that X has approximately an exponential distribution. What is the probability that nobody shows up within the 2 minutes after the previous customer? What is the probability that the next student arrives in the third minute, knowing...
Cars arrive at Carla’s Muffler Shop for repair work at an average of 3 per hour,...
Cars arrive at Carla’s Muffler Shop for repair work at an average of 3 per hour, following an exponential distribution. (a) What is the expected time between arrivals? (b) What is the variance of the time between arrivals? Use Appendix C
People arrive to a hotel at a rate of 20 on average with each half hour....
People arrive to a hotel at a rate of 20 on average with each half hour. Make a probability distribution in excel for an interval of 30 minute duration. What’s the probability that no more then 14 customers will arrive?
Cars and trucks arrive at a gas station randomly and independently of each other, at an average rate of 17.4 and 9.6 per hour, respectively.
  Cars and trucks arrive at a gas station randomly and independently of each other, at an average rate of 17.4 and 9.6 per hour, respectively. Use the Poisson distribution to find the probability that a. more than 5 cars arrive during the next 16 minutes, b. we have to wait more than 21 minutes for the arrival of the third truck (from now), c. the fifth vehicle will take between 17 and 23 minutes (from now) to arrive.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT