In: Statistics and Probability
A company produces electric motors for use in home appliances. One of the company’s managers is interested in examining the relationship between delivery costs in a month and the number of motors produced that month that were returned by dissatisfied customers (Y). He has collected the data in the file.Write the theoretical formula and calculate using excel the r-square of the regression equation and interpret the result.
Month | Delivery cost (k$) X | Motors_Returned Y |
1 | 43,55 | 67 |
2 | 55,83 | 64 |
3 | 48,53 | 65 |
4 | 48,55 | 65 |
5 | 69,29 | 65 |
6 | 64,39 | 64 |
7 | 58,32 | 64 |
8 | 76,90 | 67 |
9 | 65,98 | 64 |
10 | 43,44 | 67 |
11 | 41,50 | 67 |
12 | 55,07 | 64 |
13 | 60,74 | 64 |
14 | 41,06 | 68 |
15 | 64,58 | 64 |
16 | 70,22 | 65 |
17 | 68,25 | 65 |
18 | 50,93 | 65 |
19 | 76,35 | 67 |
20 | 43,93 | 67 |
21 | 60,25 | 64 |
22 | 42,22 | 67 |
23 | 79,18 | 68 |
24 | 66,63 | 64 |
25 | 79,67 | 68 |
26 | 52,79 | 65 |
27 | 50,58 | 65 |
28 | 66,86 | 64 |
29 | 42,95 | 67 |
30 | 62,45 | 64 |
31 | 42,73 | 67 |
32 | 78,45 | 67 |
33 | 74,49 | 66 |
34 | 62,68 | 64 |
35 | 74,41 | 66 |
36 | 42,41 | 67 |
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.1341 | |||||
R Square | 0.0180 | |||||
Adjusted R Square | -0.0109 | |||||
Standard Error | 1.4496 | |||||
Observations | 36 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 1.3091 | 1.3091 | 0.6230 | 0.4354 | |
Residual | 34 | 71.4409 | 2.1012 | |||
Total | 35 | 72.75 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 66.477 | 1.157231326 | 57.444542 | 1.906E-35 | 64.12484698 | 68.8284 |
Delivery cost (k$) X | -0.015 | 0.019162413 | -0.7893128 | 0.4353992 | -0.054067847 | 0.023818 |
=========================
by increasing one unit if x there is on an average 0.015 unit decrease in y
=========================
By increasing one unit of x there is 1.8% variation in y