In: Math
Observed
Frequency
Brand of Preferences
A 102
B 121
C 120
D 57
Use an Excel spreadsheet to test this hypothesis at the 0.05 level. Submit the Excel spreadsheet you create along with an explanation of results
ho:   all categories are equally likely.
h1:   at least one of the category differs
significantly
| Oi | pi = 1/4 | Ei = pi*N | (Oi-ei)^2/Ei | |
| 102 | 0.2500 | 100 | 0.04 | |
| 121 | 0.2500 | 100 | 4.41 | |
| 120 | 0.2500 | 100 | 4.00 | |
| 57 | 0.2500 | 100 | 18.49 | |
| SUM | 400 | 1.0000 | 400 | 26.94 | 
chisq=   26.940   = sum(Oi-Ei)^2/Ei
      
alpha=   0.05  
k=   4.00  
critival value=   CHISQ.INV.RT(0.05,4-1)=  
7.815
      
p-value=   6.06036E-06 = CHISQ.TEST(B2:B4,D2:D4)
  
With chisq(4) = 26.94, p<5%, i reject ho and conclude that at least one of the category differs significantly.
Excel sheet:

Excel Formula Sheet:
