In: Statistics and Probability
1.
In a random sample of 86 college students has a mean earnings of $3120 with a standard deviation of $677 over the summer months. Determine whether a normal distribution (Z values) or a t- distribution should be used or whether neither of these can be used to construct a confidence interval. Assume the distribution of weekly food expense is normally shaped.
| a. | 
 Use a t distribution  | 
|
| b. | 
 Use a normal distribution (Z values)  | 
|
| c. | 
 Neither a normal distribution nor a t distribution can be used  | 
2.
Find the critical t value for a 90% confidence interval and a sample size, n, equal to 10
| a. | 
 2.262  | 
|
| b. | 
 3.25  | 
|
| c. | 
 1.812  | 
|
| d. | 
 1.833  | 
|
| e. | 
 None of the above  | 
3.
What are the critical Z values for a 95% Confidence Interval
| a. | 
 -1.25 and 1.25  | 
|
| b. | 
 -1.645 and 1.645  | 
|
| c. | 
 -1.575 and 1.575  | 
|
| d. | 
 -1.96 and 1.96  | 
|
| e. | 
 None of the above  | 
4.
What are the critical Z values for a 90% Confidence Interval
| a. | 
 -1.25 and 1.25  | 
|
| b. | 
 -1.645 and 1.645  | 
|
| c. | 
 -1.575 and 1.575  | 
|
| d. | 
 -1.96 and 1.96  | 
|
| e. | 
 -2.33 and 2.33  | 
Solution:
1.
Population SD is unknown. So use t distribution.
Use a t distribution
2.
c = 90% = 0.90
c = 0.90
= 1- c = 1- 0.90 = 0.10
  
/2
= 0.10 
2 = 0.05
Also, d.f = n - 1 = 10 - 1 = 9
  
   =  
0.05,9
= 1.833
Answer : 1.833
3.
c = 95% = 0.95
= 1- c = 1- 0.95 = 0.05
  
/2
= 0.025
Using z table , z = 1.96
-1.96 and 1.96
4.
c = 90% = 0.90
= 1- c = 1- 0.90 = 0.10
  
/2
= 0.05
Using z table , z = 1.645
-1.645 and 1.645