Question

In: Math

Xn are independent random variables and each one of them has a normal distribution with mean...

Xn are independent random variables and each one of them has a normal distribution with mean 0 and variance 1

what is the distribution of X-bar if n=9

what is the probability of X-bar =<3 if n=9

Solutions

Expert Solution

Solution :

Given that ,

mean = = 0

standard deviation = = 1

n = 9

= 0 and = 1

2 = 1

= / n = 1 / 9 = 1 / 3

(a)

~ N( , )

~ N(0 , 1/3 )

(b)

P( 3) = P(( - ) / < (3 - 0) / 1/3)

= P(z < 9)

Using standard normal table,

Probability = 0


Related Solutions

1. Let ?1, . . . ?? be ? independent random variables with normal distribution of...
1. Let ?1, . . . ?? be ? independent random variables with normal distribution of expectation 0 and variance ? 2 . Let ?̂︁2 1 be the sample variance ??, ?̂︁2 2 be 1 ? ∑︀ ? ?2 ? . (1) Show that the expectation of ?̂︁2 1 and ?̂︁2 2 are both ? 2 . In other words, both are unbiased point estimates of ? 2 . (2) Write down the p.d.f. of ?̂︁2 1 and ?̂︁2 2....
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Q5.LetX1,X2,···Xn be an independent random sample from a distribution with finite mean µ and finite variance...
Q5.LetX1,X2,···Xn be an independent random sample from a distribution with finite mean µ and finite variance σ2. An estimator of µ in the form L = c1X1 + c2X2 +···cnXn 2 is called a linear estimator,where c1,c2,··· ,cn are some known constants.If L is unbiased,then it is called a linear unbiased estimator.A linear unbiased estimator that has the minimum variance among all linear unbiased estimators is called the best linear unbiased estimator (BLUE). (i) Express E(L) and Var(L) in terms...
Let {Zt} be independent normal random variables with mean 0 and variance σ2. Let a, b,...
Let {Zt} be independent normal random variables with mean 0 and variance σ2. Let a, b, c be constants. Which of the following processes are stationary? Evaluate mean and autocovariance function. (a) Xt = Ztcos(at) + Zt−1sin(bt) (b) Xt =a+bZt + cZt−2 (c) Xt = ZtZt−1
Sample 1 has n1 independent random variables (X1, X2, ...Xn1) following normal distribution, N(µ1, σ21); and...
Sample 1 has n1 independent random variables (X1, X2, ...Xn1) following normal distribution, N(µ1, σ21); and Sample 2 has n2 independent random variables (Y1, Y2, ...Yn2 ) following normal distribution, N(µ2, σ22). Suppose sample 1 mean is X bar, sample 2 mean is Y bar , and we know n1 ,n2 , σ21 and σ22. Construct a Z statistic (i.e. Z~N(0, 1)) to test H0 : µ1 = µ2.
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. ( a) Compute the cdf of Y := min(X1, . . . , Xn). (b) Use (a) to compute the pdf of Y . (c) Find E(Y ).
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution,...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution, where μ is unknown but σ2 is known, and it is of interest to test H0: μ = μ0 versus H1: μ ̸= μ0 for some value μ0. The R code below plots the power curve of the test Reject H0 iff |√n(X ̄n − μ0)/σ| > zα/2 for user-selected values of μ0, n, σ, and α. For a sequence of values of μ,...
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean...
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean µ 1. Find the maximum likelihood estimator of µ 2.Determine whether the maximum likelihood estimator is unbiased for µ
If X1,...Xn are normally distributed random variables. is the sample mean an unbiased estimator for the...
If X1,...Xn are normally distributed random variables. is the sample mean an unbiased estimator for the median? can you explain why or why not?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT