Question

In: Chemistry

An ice “calorimeter” can be used to determine the specific heat capacity of a metal. A...

An ice “calorimeter” can be used to determine the specific heat capacity of a metal. A piece of hot metal is

       dropped onto a weighed quantity of ice. The energy transferred from the metal to the ice can be determined

       from the amount of ice melted. Suppose you heat a 9.36-g piece of platinum to 98.6 °C in a boiling water bath

       and then drop it onto ice at 0.0 °C. When the temperature of the metal has dropped to 0.0 °C, it is found that

       0.37 g of ice has melted. What is the specific heat capacity of platinum ? Heat of fusion of water = 333 J/g

Solutions

Expert Solution

So heat released by metal will be equal to the heat gained by ice to melt. Heat released is denoted with negative sign.

Use the formula of :

And calculate s which is specific heat capacity.

SO, s = 0.13 J/g°C

NOTE: DEAR STUDENT IF YOU HAVE ANY QUERIES PLEASE ASK IN THE COMMENT. ALL THE BEST.


Related Solutions

In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
In the specific heat experiment, critical factors are the heat capacity of the calorimeter, the temperature...
In the specific heat experiment, critical factors are the heat capacity of the calorimeter, the temperature of the holt sample, and the final temperature of the calorimeter. What effect could influence the temperature of the hot sample at the instant it is inserted into the calorimeter? What issues surround the measurement of the final calorimeter temperature?
Question 1 A calorimeter is a device which can be used to determine the heat of...
Question 1 A calorimeter is a device which can be used to determine the heat of reaction. The process of measuring the heat is known as calorimetry. Based on the above statement and from your further findings, answer the following questions: a) Analyze the operational principle of a calorimeter in a proper sequence. Organize your answer in the form of a flow diagram : b) Outline how does the operational principle of the calorimeter is related to the First Law...
A calorimeter that measures an exothermic heat of reaction by the quantity of ice that can...
A calorimeter that measures an exothermic heat of reaction by the quantity of ice that can be melted is called an ice calorimeter. Consider a reaction in which 0.00400 mol of methane gas, CH4 (g), is burned completely at constant pressure in the presence of excess air. The heat liberated from the reaction melted 10.7 g of ice at 0 degrees celcius (the heat required to melt the ice (heat of fusion) is 333.5 J/g). What is the change in...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.466-g sample of 1,8-octanediol (C8H18O2) in a bomb calorimeter containing 1200. g of water. The temperature increases from 25.90 °C...
A)A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A)A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.392-g sample of bisphenol A (C15H16O2) in a bomb calorimeter containing 1140. g of water. The temperature increases from 25.00...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.337-g sample of bisphenol A (C15H16O2) in a bomb calorimeter containing 1040. g of water. The temperature increases from 25.90...
The initial temperature of 140 g of ice is −22°C. The specific heat capacity of ice...
The initial temperature of 140 g of ice is −22°C. The specific heat capacity of ice is 0.5 cal/g·C° and waters is 1 cal/g·C°. The latent heat of fusion of water is 80 cal/g. a. How much heat is required to raise the ice to 0°C? b. How much additional heat is required to completely melt the ice after it has reached 0°C? c. How much additional heat is required to heat the water (obtained by melting the ice) to...
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of...
In the laboratory a student uses a "coffee cup" calorimeter to determine the specific heat of a metal. She heats 18.3 grams of gold to 99.38°C and then drops it into a cup containing 80.2 grams of water at 20.87°C. She measures the final temperature to be 21.40°C. Assuming that all of the heat is transferred to the water, she calculates the specific heat of gold to be J/g°C.
The specific heat capacity of an unknown metal was determined following Part A of the Experimental...
The specific heat capacity of an unknown metal was determined following Part A of the Experimental Procedure in this experiment. The following table is for Trial 1. Mass of unknown metal (g) 15.45 Temperature of unknown metal (oC) 95.4 Mass of water(g) 100.0 The specific heat of water (J/g.oC) 4.184 Temperature of water (oC) 23.0 Maximum temperature of water (oC) 25.8 Calculate the specific heat capacity of unknown metal (J/g.oC) _____
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT