Question

In: Statistics and Probability

How to find confidence intervals LCL and UCL for 90%, 95%, 99% after performing t-test :two...

How to find confidence intervals LCL and UCL for 90%, 95%, 99% after performing t-test :two sample assuming equal variances? (mean b- mean a)- CI? following (mean b- mean a)+CI? Or ?

Solutions

Expert Solution

We want to find the confidence intervals LCL and UCL for 90%, 95%, 99% after performing t-test :two sample assuming equal variances.

Confidence interval formula for t-test :two sample :-

i.e

[ Where,

Population Mean for 1st sample ,   Population Mean for 2nd sample.

Number of random sample for 1st sample   Number of random sample for 2nd sample.

mean a = Sample Mean for 1st sample , mean b = Sample Mean for 2nd sample.

Sample Standard Deviation for 1st sample ,    Sample Standard Deviation for 2nd sample.

  

Value of

For 90% , ,

For 95% , ,

For 99% ,

Now if we know all the values then we put all the value in the formula and we get confidence interval for t-test :two sample.

[ Note:- Here we consider a = 1st sample , b = 2nd sample. And you get t-critical values from t-distribution probability table. ]


Related Solutions

construct 90, 95, and 99 percent confidence intervals for the population mean, and state the practical...
construct 90, 95, and 99 percent confidence intervals for the population mean, and state the practical and probabilistic interpretations of each. Indicate which interpretation you think would be more appropriate to use. Explain why the three intervals that you construct are not of equal width. Indicate which of the three intervals you would prefer to use as an estimate of the population mean, and state the reason for your choice. In a length of hospitalization study conducted by several cooperating...
Calculate and interpret 90%, 95%, and 99% confidence intervals for both groups of approaches in question...
Calculate and interpret 90%, 95%, and 99% confidence intervals for both groups of approaches in question 5. Also provide 90%, 95%, and 99% confidence intervals for both groups when the sample size is increased from 10 to 150. Interpret all statistics. a. A random sample of 15 families representing three social classes has been observed for the frequency with which the parents administer physical punishment to the children over a period of a week. Are the differences significant? Use the...
What are the z values for the following confidence intervals: A) 99% B) 95% C) 90%...
What are the z values for the following confidence intervals: A) 99% B) 95% C) 90% D) 80% E) 70% Please explain also so I can learn how you are doing it.
Construct  90%, 95%, and 99% confidence intervals for the population mean, and state the practical and probabilistic...
Construct  90%, 95%, and 99% confidence intervals for the population mean, and state the practical and probabilistic interpretations of each. Indicate which interpretation you think would be more appropriate to use. Explain why the three intervals that you construct are not of equal width. Indicate which of the three intervals you would prefer to use as an estimate of the population mean, and state the reason for your choice. In a length of hospitalization study conducted by several cooperating hospitals, a...
Find the power for a difference in means of 2.79 using 95% and 99% confidence intervals....
Find the power for a difference in means of 2.79 using 95% and 99% confidence intervals. [11.540 8.203 8.214 13.165 11.451 13.015 11.060 10.488 8.849 8.271] [4.708 8.013 9.886 7.026 6.051 5.546 7.914 9.951 9.880 7.381]
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.9 11.6 11.9 12.2 12.5 11.4 12.0 11.7 11.8 12.9 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ?≤ μ ?≤ 95% confidence interval: ?≤ μ? ≤ 99% confidence interval:? ≤ μ ?≤ The point estimate is?
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.2 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 13.2 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 11.9 11.6 11.9 13.0 12.5 11.4 12.0 11.7 11.8 11.9 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.3 11.6 11.9 12.9 12.5 11.4 12.0 11.7 11.8 12.3 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval ≤ μ ≤ enter the upper limit of the 90% confidence interval 95% confidence interval: enter...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.5 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 12.5 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ≤ μ ≤ 95% confidence interval: ≤ μ ≤ 99% confidence interval: ≤ μ ≤ The point estimate is .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT