In: Statistics and Probability
Construct 90%, 95%, and 99% confidence intervals to estimate
μ from the following data. State the point estimate.
Assume the data come from a normally distributed
population.
12.5 | 11.6 | 11.9 | 12.5 | 12.5 | 11.4 | 12.0 |
11.7 | 11.8 | 12.5 |
Appendix A Statistical Tables
(Round the intermediate values to 4 decimal places.
Round your answers to 2 decimal places.)
90% confidence interval:
≤ μ ≤
95% confidence interval:
≤ μ ≤
99% confidence interval:
≤ μ ≤
The point estimate is
.
Mean X̅ = Σ Xi / n
X̅ = 120.4 / 10 = 12.04
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1 )
SX = √ ( 1.644 / 10 -1 ) = 0.4274
Point Estimate X̅ = 12.04
Part a)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.1 /2, 10- 1 ) = 1.833
12.04 ± t(0.1/2, 10 -1) * 0.4274/√(10)
Lower Limit = 12.04 - t(0.1/2, 10 -1) 0.4274/√(10)
Lower Limit = 11.79
Upper Limit = 12.04 + t(0.1/2, 10 -1) 0.4274/√(10)
Upper Limit = 12.29
90% Confidence interval is ( 11.79 , 12.29
)
Part b)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.05 /2, 10- 1 ) = 2.262
12.04 ± t(0.05/2, 10 -1) * 0.4274/√(10)
Lower Limit = 12.04 - t(0.05/2, 10 -1) 0.4274/√(10)
Lower Limit = 11.73
Upper Limit = 12.04 + t(0.05/2, 10 -1) 0.4274/√(10)
Upper Limit = 12.35
95% Confidence interval is ( 11.73 , 12.35
)
Part c)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.01 /2, 10- 1 ) = 3.25
12.04 ± t(0.01/2, 10 -1) * 0.4274/√(10)
Lower Limit = 12.04 - t(0.01/2, 10 -1) 0.4274/√(10)
Lower Limit = 11.60
Upper Limit = 12.04 + t(0.01/2, 10 -1) 0.4274/√(10)
Upper Limit = 12.48
99% Confidence interval is ( 11.60 , 12.48
)