Question

In: Statistics and Probability

Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...

Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population.

12.5 11.6 11.9 12.5 12.5 11.4 12.0
11.7 11.8 12.5


Appendix A Statistical Tables


(Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.)

90% confidence interval:

μ


95% confidence interval:

μ


99% confidence interval:

μ



The point estimate is

.

Solutions

Expert Solution

Mean X̅ = Σ Xi / n
X̅ = 120.4 / 10 = 12.04

Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1 )

SX = √ ( 1.644 / 10 -1 ) = 0.4274

Point Estimate X̅ = 12.04

Part a)

Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.1 /2, 10- 1 ) = 1.833
12.04 ± t(0.1/2, 10 -1) * 0.4274/√(10)
Lower Limit = 12.04 - t(0.1/2, 10 -1) 0.4274/√(10)
Lower Limit = 11.79
Upper Limit = 12.04 + t(0.1/2, 10 -1) 0.4274/√(10)
Upper Limit = 12.29
90% Confidence interval is ( 11.79 , 12.29 )

Part b)

Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.05 /2, 10- 1 ) = 2.262
12.04 ± t(0.05/2, 10 -1) * 0.4274/√(10)
Lower Limit = 12.04 - t(0.05/2, 10 -1) 0.4274/√(10)
Lower Limit = 11.73
Upper Limit = 12.04 + t(0.05/2, 10 -1) 0.4274/√(10)
Upper Limit = 12.35
95% Confidence interval is ( 11.73 , 12.35 )

Part c)

Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.01 /2, 10- 1 ) = 3.25
12.04 ± t(0.01/2, 10 -1) * 0.4274/√(10)
Lower Limit = 12.04 - t(0.01/2, 10 -1) 0.4274/√(10)
Lower Limit = 11.60
Upper Limit = 12.04 + t(0.01/2, 10 -1) 0.4274/√(10)
Upper Limit = 12.48
99% Confidence interval is ( 11.60 , 12.48 )


Related Solutions

Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.9 11.6 11.9 12.2 12.5 11.4 12.0 11.7 11.8 12.9 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ?≤ μ ?≤ 95% confidence interval: ?≤ μ? ≤ 99% confidence interval:? ≤ μ ?≤ The point estimate is?
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.2 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 13.2 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 11.9 11.6 11.9 13.0 12.5 11.4 12.0 11.7 11.8 11.9 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.3 11.6 11.9 12.9 12.5 11.4 12.0 11.7 11.8 12.3 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval ≤ μ ≤ enter the upper limit of the 90% confidence interval 95% confidence interval: enter...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 11.8 11.6 11.9 13.0 12.5 11.4 12.0 11.7 11.8 11.8 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval   95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.0 11.6 11.9 12.4 12.5 11.4 12.0 11.7 11.8 13.0 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.0 11.6 11.9 12.4 12.5 11.4 12.0 11.7 11.8 13.0 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95%...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.7 11.6 11.9 12.5 12.5 11.4 12.0 11.7 11.8 13.7 Appendix A Statistical Tables (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: ≤ μ ≤ 95% confidence interval: ≤ μ ≤ 99% confidence interval: ≤ μ ≤ The point estimate is .
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 12.5 11.6 11.9 12.4 12.5 11.4 12.0 11.7 11.8 12.5 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval_____ ≤ μ ≤_____ 95% confidence interval: enter the lower limit of the 95% confidence interval_____ ≤...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the...
Construct 90%, 95%, and 99% confidence intervals to estimate μ from the following data. State the point estimate. Assume the data come from a normally distributed population. 13.1 11.6 11.9 12.8 12.5 11.4 12.0 11.7 11.8 13.1 (Round the intermediate values to 4 decimal places. Round your answers to 2 decimal places.) 90% confidence interval: enter the lower limit of the 90% confidence interval  ≤ μ ≤ enter the upper limit of the 90% confidence interval 95% confidence interval: enter the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT