Question

In: Physics

A 1.0 kg ball and a 2.0 kg ball are connected by a 1.1-m-long rigid, massless...

A 1.0 kg ball and a 2.0 kg ball are connected by a 1.1-m-long rigid, massless rod. The rod is rotating cw about its geometric center at 17 rpm. What force should be applied to bring this structure to a stop in 4.4 seconds, if the force can only be applied at a location 0.25 m from the geometric center?

Solutions

Expert Solution

Since in the question it is mentioned that rotation is about geometrical center of rod,

Assume 1kg ball is at x=0 position and 2kg ball is at x=1.1m position.

So, rotation will be around X=1.1/2 m=0.55 m

since rotation is with 17 rotation per minute,(assuming clockwise rotation is positive)

angular velocity = 17 *2*pi rad/minute

= 1.779 rad/s

now to stop the rotation in 4.4 s, angular velocity will be 0 after 4.4 sec

so, angular acceleration, can be calculated by

so

torue required,

and

I =m1*(distance from geometrical center)^2 + m2*(distance fromgeometrical center)^2

since the force is acting 0.25m from geometrical center, And also to cancel net force on the rod you need to apply force on both side from geometrical center. so, that both force can cancel. So now F will produce torque. So, force applied at the both end

So, 0.734 N force is applied both side 0.25m from geometrical center of rod such that both force will produce same direction of torque.

good luck

please give your feedback


Related Solutions

A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long rigid, massless...
A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long rigid, massless rod. The rod is rotating cw about its center of mass at 19rpm . What torque will bring the balls to a halt in 5.0s ? Express your answer to two significant figures and include the appropriate units.
A 2.0 kg ball and a 3.5 kg ball are connected by a 3.0-mm-long rigid, massless...
A 2.0 kg ball and a 3.5 kg ball are connected by a 3.0-mm-long rigid, massless rod. The rod and balls are rotating clockwise about its center of gravity at 18 rpm. What magnitude torque will bring the balls to a halt in 6.0 s?
A 1.71 kg ball and a 3.27 kg ball are connected by a 1.76 m long...
A 1.71 kg ball and a 3.27 kg ball are connected by a 1.76 m long rigid, massless rod. The rod is rotating clockwise about its center of mass at 24 rpm. What torque will bring the balls to a halt in 10.06 s? (Give an absolute value of torque.)
A 3 kg ball is attached to a tree branch by a 2.0 m long rope....
A 3 kg ball is attached to a tree branch by a 2.0 m long rope. It is released from rest when the string is parallel to the ground. Just at it swings to its lowest point, it collides elastically head-on with a 2 kg ball of the same dimension, but going in the opposite direction. The 3 kg ball rebounds at a speed of 13 m/s after the collision. Find the speed of the 2 kg ball before the...
1) A ball 1 with a mass of 2.0 kg and moving at 2.0 m/s strikes...
1) A ball 1 with a mass of 2.0 kg and moving at 2.0 m/s strikes a glancing blow on a second ball 2 which is initially at rest. Assume no external forces act. After the collision, ball 1 is moving at right angles to its original direction at a speed of 3.0 m/s. (a) Calculate the initial momentum of the system. (b) Determine the magnitude of the momentum of Ball 2 after the collision? (c) In what direction is...
A 24 kg mass is connected to a nail on a frictionless table by a massless...
A 24 kg mass is connected to a nail on a frictionless table by a massless string 1.1 m long. There is no appreciable friction between the nail and the string. If the tension in the string is 54 N while the mass moves in a uniform circle on the table, how long does it take for the mass to make one complete revolution? (Give answer to the nearest 0.1 s)
Three 90.790.7 g masses are connected in a triangular shape by massless rigid wires as shown...
Three 90.790.7 g masses are connected in a triangular shape by massless rigid wires as shown in the first image (which is not drawn to scale). The coordinates of each mass are given in centimeters. Mass A is located at (0,0)(0,0), mass B is at (10.2,19.5)(10.2,19.5), and mass C is at (17.3,13.4)(17.3,13.4). Find the xx- and yy‑coordinates of the center of mass of the triangular object. Two more 90.790.7 g masses are connected by a straight piece of wire and...
Three 81.6 g masses are connected in a triangular shape by massless rigid wires as shown...
Three 81.6 g masses are connected in a triangular shape by massless rigid wires as shown in the first image (which is not drawn to scale). The coordinates of each mass are given in centimeters. Mass A is located at (0,0) , mass B is at (12.2,22.5) , and mass C is at (21.3,13.4) . Find the ? - and ? ‑coordinates of the center of mass of the triangular object. A graph has a vertical Y axis and a...
Two masses, 4.0 kg and 6.0 kg, are connected by a "massless" rope over a "frictionless"...
Two masses, 4.0 kg and 6.0 kg, are connected by a "massless" rope over a "frictionless" pulley as pictured in the diagram. The ramp is inclined at 30.0 degrees and the coefficient of kinetic friction on the ramp is 0.18. a) determine acceleration of the system once it begins to slide b) determine tension in the rope. Show all work
A 2.4 kg block hangs from the bottom of a 2.0 kg, 1.6 m long rod....
A 2.4 kg block hangs from the bottom of a 2.0 kg, 1.6 m long rod. The block and the rod form a pendulum that swings out on a frictionless pivot at the top end of the rod. A 10 g bullet is fired horizontally into the block, where it sticks, causing the pendulum to swing out to an angle of 45 degrees. You can treat the wood black as a point mass. What is the moment of inertia of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT