In: Chemistry
Discuss in detail the polymer architecture and its affect on the physical properties of polymers at least 1000 words
Polymer architecture in polymer science relates to the way branching leads to a deviation from a strictly linear polymer chain.Branching may occur randomly or reactions may be designed so that specific architectures are targeted.It is an important microstructural feature. A polymer's architecture affects many of its physical properties including solution viscosity, melt viscosity, solubility in various solvents, glass transition temperature and the size of individual polymer coils in solution.
Effect of architecture on physical properties
In general, the higher degree of branching, the more compact a polymer chain is. Branching also affects chain entanglement, the ability of chains to slide past one another, in turn affecting the bulk physical properties. Long chain branches may increase polymer strength, toughness, and the glass transition temperature (Tg) due to an increase in the number of entanglements per chain. A random and short chain length between branches, on the other hand, may reduce polymer strength due to disruption of the chains' ability to interact with each other or crystallize.
An example of the effect of branching on physical properties can be found in polyethylene. High-density polyethylene (HDPE) has a very low degree of branching, is relatively stiff, and is used in applications such as bullet-proof vests. Low-density polyethylene (LDPE), on the other hand, has significant numbers of both long and short branches, is relatively flexible, and is used in applications such as plastic films.
Dendrimers are a special case of branched polymer where every monomer unit is also a branch point. This tends to reduce intermolecular chain entanglement and crystallization. A related architecture, the dendritic polymer, are not perfectly branched but share similar properties to dendrimers due to their high degree of branching.
The degree of branching that occurs during polymerisation can be influenced by the functionality of the monomers that are used.For example, in a free radical polymerisation of styrene, addition of divinylbenzene, which has a functionality of 2, will result in the formation of branched polymer.