In: Finance
Morin Company’s annual bonds mature in 8 years, have a par value of $1,000, and currently sells for $903.04. The market requires an interest rate of 8.2% on these bonds. What is the bond’s coupon rate? 7.50% 7.25% 6.50% 6.25% 6.10%
6.50%
Working:
Current selling price of a bond is the present value of cash flow from bond which is nothing but present value of par value and | ||||||||||||
present value of annual coupon interest . | ||||||||||||
Step-1:Calculate present value of par Value | ||||||||||||
Present value of par value | = | Par Value x Present Value of $ 1 to be received in year 8 | ||||||||||
= | 1000 | x | (1+0.082)^-8 | |||||||||
= | $ 532.33 | |||||||||||
Step-2:Present Value of annual coupon interest amount | ||||||||||||
Current Selling price of bond | $ 903.04 | |||||||||||
Less:Present value of par value | $ 532.33 | |||||||||||
Present value of coupon interest amount | $ 370.71 | |||||||||||
Step-3:Calculate annual coupon interest amount | ||||||||||||
Present Value of annual coupon interest amount | = | Annual coupon amount x Present value of annuity of $ 1 | ||||||||||
or, | $ 370.71 | = | Annual coupon amount x 5.7033 | |||||||||
or, | Annual coupon amount | = | $ 370.71 | / | 5.7033 | |||||||
or, | Annual coupon amount | = | $ 65.00 | |||||||||
Working: | ||||||||||||
Present value of annuity of $ 1 | = | (1-(1+i)^-n)/i | Where, | |||||||||
= | (1-(1+0.082)^-8)/0.082 | i | 8.20% | |||||||||
= | 5.7033 | n | 8 | |||||||||
Step-4:Calculate annual coupon rate | ||||||||||||
Annual coupon rate | = | Annual coupon amount/Par Value | ||||||||||
= | $ 65.00 | / | $ 1,000 | |||||||||
= | 6.50% | |||||||||||