In: Physics
Derive an expression for the minimum and maximum intensity when light reflects from a thin film
Consider a thin film of uniform thickness (t) and R.I (?)
On Reflected side,
The ray of light BF and DE will interfere. The path difference between BF and DE is,
?=?(BC+CD)?BG?=?(BC+CD)?BG
BC=CD=tcosr..........(1)BC=CD=tcosr..........(1)
Now,
BD = (2t) tan r .......(2)
BG = BD sin i
BG = (2t) tan r sin i
BG=2t?sinr(sinrcosr)BG=2t?sinr(sinrcosr) [?=sinisinr][?=sinisinr]
BG=2?tsin2rcosr......(3)BG=2?tsin2rcosr......(3)
Substituting (i) and (iii) in ? :
?=?(tcosr+tcosr)?2?tsin2rcosr?=?(tcosr+tcosr)?2?tsin2rcosr
=2?tcosr(1?sin2r)=2?tcosr(1?sin2r)
?=2?tcosr?=2?tcosr
This is a geometric path difference. However, there is a phase change of ?, as ray BF is reflected from a denser medium. Hence we need to add ±?2±?2 to path difference
?=2?tcosr±?2?=2?tcosr±?2
For Destructive Interference:
?=n??=n?
2?tcosr±?2=n?2?tcosr±?2=n?
2?tcosr=(2n±1)?2.....(n=0,1,2,...)2?tcosr=(2n±1)?2.....(n=0,1,2,...)
This is the required expression for constructive Interference or Maxima.
For Destructive interference:
?=(2n±1)?2?=(2n±1)?2
2?tcosr±?2=n?2?tcosr±?2=n?
2?tcosr=n?2?tcosr=n?
This is the required expression for destructive interference.