Question

In: Physics

1.) What is the wavelength of light with constructive interference reflected from a thin film in...

1.) What is the wavelength of light with constructive interference reflected from a thin film in a vacuum, with an index of refraction 1.37, a thickness of 4.00*10^-9 m; which is the minimum thickness necessary? A.) 2.19*10^-8 B.)1.10*10^-8 C.) 5.84*10^-9 D.) 2.74*10^-9

2.) Two identical EM wave sources emit waves with frequency of 7.84*10^5 Hz. The waves are propagating in air. A detector captures minimum signal at 5984 m away from source 1. What is the distance from the detector to source 2? A.) 6180 m B.) 5790 C.) All are possible D.) 6560 m

3.) At what angle (in radians) will light going from a medium with index of refraction 1.33, not totally internally reflected, at an interface with a medium with an index of refraction of 1.13? A.) 1.60 B.) 1.02 C.) 0.925 D.)1.64

Solutions

Expert Solution

The solution is given below.

Thank you.


Related Solutions

A thin film is in the air with a wavelength of 615 nm and is 90...
A thin film is in the air with a wavelength of 615 nm and is 90 nm thick. What is the minimum index of refraction? The light at wavelegth= 410 nm is a first order maximum at 12 degrees. What is the angle for the second order maximum at 670 nm? The central light is 3 m away when every other slit is covered; how far will the first interference max be? All but 2 adjacent slits of 10 are...
An interference pattern is produced by light with a wavelength 600 nm from a distant source...
An interference pattern is produced by light with a wavelength 600 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.560 mm . If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? What would be the angular position of the second-order, two-slit, interference maxima in this case? Let the slits have a width 0.280 mm . In terms of the intensity I0...
Daylight gets reflected from a freestanding soap film and appears reddish (wavelength = 660 nm) when...
Daylight gets reflected from a freestanding soap film and appears reddish (wavelength = 660 nm) when observed from a direction perpendicular to the film surface. Assume a refractive index of n = 1.33. (a) What are the two smallest possible thicknesses of the soap film which fit to your observation? (b) Which typical wavelength and related color do you observe when watching the film from an angle of 50° (relative to the surface normal) using the smallest possible thickness of...
C. Anti-reflection coatings So far you have explored constructive interference from multi-layer thin films. It is...
C. Anti-reflection coatings So far you have explored constructive interference from multi-layer thin films. It is also possible for interference to be destructive, a phenomenon exploited in making antireflection coatings for optical elements such as eyeglasses. In order to allow the lenses to be thinner (and thus lighter weight), eyeglass lenses can be made of a plastic that has a high index of refraction (n p = 1.70). The high index causes the plastic to reflect light more effectively than...
Derive an expression for the minimum and maximum intensity when light reflects from a thin film
Derive an expression for the minimum and maximum intensity when light reflects from a thin film
Write down the condition for thin film interference. Calculate the position (angular) and the distance between...
Write down the condition for thin film interference. Calculate the position (angular) and the distance between the 3rd and 4th dark lines of the interference pattern on the screen when the slits are spaced 0.450 mm apart and are placed 80.0 cm from the screen. The slits are illuminated with coherent light of wavelength 550nm. Also calculate the distance between the 3rd and 4th dark lines when the entire apparatus was immersed in water. How this separation compares with separation...
Light of wavelength illuminates a pair of slits and the first bright fringe of the interference...
Light of wavelength illuminates a pair of slits and the first bright fringe of the interference pattern is seen at an angle of o from the central maximum. Find the separation between the slits. The equation did not have the values. Please solve with details.
What is the thinnest film that produces a strong reflection for green light with a wavelength of 500 nm?
A very thin oil film (n=1.25) floats on water (n=1.33). What is the thinnest film that produces a strong reflection for green light with a wavelength of 500 nm? d=________nm  
Red laser light with a wavelength of 633 nm shines on a surface with destructive interference...
Red laser light with a wavelength of 633 nm shines on a surface with destructive interference for that wavelength. The surface will appear: 1. white. 2. violet. 3. red. 4. black.
Suppose a certain wavelength of light falls on a diffraction grating and creates an interference pattern....
Suppose a certain wavelength of light falls on a diffraction grating and creates an interference pattern. What happens to the interference pattern if the same light falls on a grating that has more lines per centimeter? What happens to the interference pattern if a longer-wavelength light falls on the same grating? Suppose a feather appears green but has no green pigment. Explain in terms of diffraction. Why is the index of refraction always greater than or equal to 1? Draw...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT