In: Math
It is known from past information that the probability of failing to finish an Ironman (called a DNF) is 15%. Suppose we take a sample of 100 Ironman races over the past few years and find that the DNF percentage is 12%. We are interested in seeing if there has been a significant decrease in the number of DNFs. Use alpha=0.05. Find the 95% confidence interval for the percentage of DNFs.
| a. | 
 (0.0665, 0.1735)  | 
|
| b. | 
 (0.0555, 0.1845)  | 
|
| c. | 
 (0.1179, 0.1221)  | 
|
| d. | 
 (0.0563, 0.1837)  | 
It is known from past information that the probability of failing to finish an Ironman (called a DNF) is 15%. Suppose we take a sample of 100 Ironman races over the past few years and find that the DNF percentage is 12%. We are interested in seeing if there has been a significant decrease in the number of DNFs. Use alpha=0.05. The null and the alternative hypotheses are:
| a. | 
 Null hypothesis: The population proportion is less than or equal to 0.12 Alternative hypothesis: The population proportion is greater than 0.12  | 
|
| b. | 
 Null hypothesis: The population proportion is less than or equal to 0.15 Alternative hypothesis: The population proportion is greater than 0.15  | 
|
| c. | 
 Null hypothesis: The population proportion is greater than or equal to 0.15 Alternative hypothesis: The population proportion is less than 0.15  | 
|
| d. | 
 Null hypothesis: The sample proportion is less than or equal to 0.15 Alternative hypothesis: The sample proportion is greater than 0.15  | 
It is known from past information that the probability of failing to finish an Ironman (called a DNF) is 15%. Suppose we take a sample of 100 Ironman races over the past few years and find that the DNF percentage is 12%. We are interested in seeing if there has been a significant decrease in the number of DNFs. Use alpha=0.05. The test statistic is:
| a. | 
 t= -0.84  | 
|
| b. | 
 t= -0.92  | 
|
| c. | 
 z= -0.84  | 
|
| d. | 
 z= -0.92  | 
It is known from past information that the probability of failing to finish an Ironman (called a DNF) is 15%. Suppose we take a sample of 100 Ironman races over the past few years and find that the DNF percentage is 12%. We are interested in seeing if there has been a significant decrease in the number of DNFs. Use alpha=0.05. The p-value is:
| a. | 
 0.1798  | 
|
| b. | 
 0.2005  | 
|
| c. | 
 0.7995  | 
|
| d. | 
 p-value greater than 0.20  | 
It is known from past information that the probability of failing to finish an Ironman (called a DNF) is 15%. Suppose we take a sample of 100 Ironman races over the past few years and find that the DNF percentage is 12%. We are interested in seeing if there has been a significant decrease in the number of DNFs. Use alpha=0.05. Assuming no prior estimate of p is available, what is the sample size that would need to be taken if we wanted to have a margin of error of 0.08 or less with 95% confidence?
| a. | 
 106  | 
|
| b. | 
 150  | 
|
| c. | 
 150.063  | 
|
| d. | 
 151  | 
1)
Level of Significance,   α =   
0.05          
Number of Items of Interest,   x =  
12          
Sample Size,   n =    100  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.120          
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0325          
margin of error , E = Z*SE =    1.960  
*   0.0325   =   0.0637
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.120  
-   0.0637   =   0.0563
Interval Upper Limit = p̂ + E =   0.120  
+   0.0637   =   0.1837
          
       
answer:
d.(0.0563, 0.1837)
----------------------------------------
2)
Null hypothesis: The population proportion is greater than or equal to 0.15
Alternative hypothesis: The population proportion is less than 0.15
--------------------
3)
Sample Proportion ,    p̂ = x/n =   
0.120          
       
          
           
   
Standard Error ,    SE = √( p(1-p)/n ) =   
0.0357          
       
Z Test Statistic = ( p̂-p)/SE = (   0.1200  
-   0.15   ) /   0.0357  
=   -0.84
-------------------
4)
without prior estimate, let    sample proportion
,   p̂ =    0.5      
           
       
   sampling error ,    E =  
0.08          
           
   
   Confidence Level ,   CL=  
0.95          
           
   
          
           
           
   
   alpha =   1-CL =  
0.05          
           
   
   Z value =    Zα/2 =   
1.960   [excel formula =normsinv(α/2)]  
           
       
          
           
           
   
   Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
1.960   /   0.08   ) ² *  
0.50   * ( 1 -   0.50   ) =
   150.1
          
           
           
   
          
           
           
   
   so,Sample Size required=  
    151