Question

In: Math

Find the best regression equation that gives selling price as a function of living area, taxes,...

Find the best regression equation that gives selling price as a function of living area, taxes, acreage and rooms.

House Selling Price
Problem taken from Triola.  Elementary Statistics.  Addison-Wesley
      House    Selling Price       Living Area       Taxes    Acreage     Rooms
$1,000         100 sq. ft $1,000
1 145 15 1.9 2 5
2 228 38 3 3.6 11
3 150 23 1.4 1.8 9
4 130 16 1.4 0.53 7
5 160 16 1.5 0.5 7
6 114 13 1.8 0.31 7
7 142 20 2.4 0.75 9
8 265 24 4 2 7

  

Solutions

Expert Solution

Please don't hesitate to give a "thumbs up" in case you're satisfied with the answer

The best regression function which gives a relation of Price by living area (X1) , taxes (X2) , acreage (X3) and rooms (X4) is the following.

I have performed the linear regression analysis below.

The best -fit line is therefore,

Price^ = 139.12 + 13.61*Living Area + 21.18*Taxes - 36.49*Acreage - 31.83*Rooms


Related Solutions

Find the regression​ equation, letting the first variable be the predictor​ (x) variable. Find the best...
Find the regression​ equation, letting the first variable be the predictor​ (x) variable. Find the best predicted Nobel Laureate rate for a country that has 78.1. Internet users per 100 people. How does it compare to the​ country's actual Nobel Laureate rate of 1.6 per 10 million​ people? Find the equation of the regression line. Y^= _____ + ______x. ​(Round the constant to one decimal place as needed. Round the coefficient to three decimal places as​ needed.) The best predicted...
Find the regression​ equation, letting the first variable be the predictor​ (x) variable. Find the best...
Find the regression​ equation, letting the first variable be the predictor​ (x) variable. Find the best predicted Nobel Laureate rate for a country that has 78.2 Internet users per 100 people. How does it compare to the​ country's actual Nobel Laureate rate of 1 per 10 million​ people? Internet Users Per 100   Nobel Laureates 79.5   5.5 80.6   24.2 77.8   8.7 45   0.1 82.7   6.1 37.9   0.1 89.2   25.3 88.9   7.6 79.8   9 83.6   12.8 52.8   1.9 77.3   12.7 56.5   3.3...
Find the regression​ equation, letting the diameter be the predictor​ (x) variable. Find the best predicted...
Find the regression​ equation, letting the diameter be the predictor​ (x) variable. Find the best predicted circumference of a marble with a diameter of 1.9 cm. How does the result compare to the actual circumference of 6.0 ​cm? Use a significance level of 0.05. _   Diameter   Circumference Baseball   7.3   22.9 Basketball   23.6   74.1 Golf   4.2   13.2 Soccer   21.8   68.5 Tennis   6.9   21.7 Ping-Pong   4.0   12.6 Volleyball   20.8   65.3 The regression equation is y^=  + x. ​(Round to five decimal places as​...
9. Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best...
9. Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 2.3 cm. Can the prediction be​ correct? What is wrong with predicting the weight in this​ case? Use a significance level of 0.05. Overhead_Width_(cm)    Weight_(kg) 7.8         157 7.4         171 9.6         258 8.2         173 7.2         151 7.6         174 What is the regression​ equation? Ŷ=____+____x (Round to two decimal places as​ needed.)...
Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best predicted...
Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 1.5 cm. Can the prediction be​ correct? What is wrong with predicting the weight in this​ case? Use a significance level of 0.05. Overhead Width​ (cm) 8.2 8.1 9.7 8.6 9.8 8.9 Weight​ (kg) 156 182 241 171 241 210 The regression equation is ​(Round to one decimal place as​ needed.)...
Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best predicted...
Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 2cm. Can the prediction be​ correct? What is wrong with predicting the weight in this​ case? Use a significance level of 0.05 from table = .811. Overhead Width (cm)   7.6   8.1   9.5   8.9   9.1   7.9 Weight (kg)                  142   193   244   193   224   179 The regression equation is y (with caret) =...
Find the linear regression equation (line of best fit), determine the correlation, and then make a...
Find the linear regression equation (line of best fit), determine the correlation, and then make a prediction. 1. The table below gives the amount of time students in a class studied for a test and their test scores. Graph the data on a scatter plot, find the line of best fit, and write the equation for the line you draw. Hours Studied 1 0 3 1.5 2.75 1 0.5 2 Test Score 78 75 90 89 97 85 81 80...
Selling Price        Living Area (Sq Feet)       No. Bathrooms No Bedrooms    Age (Years) $240,000            &nbs
Selling Price        Living Area (Sq Feet)       No. Bathrooms No Bedrooms    Age (Years) $240,000              2,022     2.5          3              20 $235,000              1,578     2              3              20 $500,075              3,400     3              3              20 $240,000              1,744     2.5          3              20 $270,000              2,560     2.5          3              20 $225,000              1,398     2.5          3              20 $280,000              2,494     2.5          3              20 $225,000              2,208     2.5          4              20 $248,220              2,550     2.5          3              20 $275,000              1,812     2.5          2              20 $137,000              1,290     1              2              20 $150,000              1,172     2              2              20 $649,000              4,128     3.5          3              20 $195,000              1,816     2.5         ...
The data show the list and selling prices for several expensive homes. Find the regression​ equation,...
The data show the list and selling prices for several expensive homes. Find the regression​ equation, letting the the list price be the independent​ (x) variable. Find the best predicted selling price of a home having a list price of ​$22 million. Is the result close to the actual selling price of ​$2.22.2 ​million? Use a significance level of 0.05 list of price of millions of $- 1.6 4.2 2.1 1.6 2.3 4 selling price of millions of $ -...
The data show the list and selling prices for several expensive homes. Find the regression​ equation,...
The data show the list and selling prices for several expensive homes. Find the regression​ equation, letting the the list price be the independent​ (x) variable. Find the best predicted selling price of a home having a list price of ​$2 million. Is the result close to the actual selling price of $1.7 ​million? Use a significance level of 0.05. List price__Selling price 4.4_____4.7 2.1_____1.7 4.5______4 3.4______3 1.9_____1.7 2.2_____1.7
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT