In: Math
Selling Price Living Area (Sq Feet) No. Bathrooms No Bedrooms Age (Years)
$240,000 2,022 2.5 3 20
$235,000 1,578 2 3 20
$500,075 3,400 3 3 20
$240,000 1,744 2.5 3 20
$270,000 2,560 2.5 3 20
$225,000 1,398 2.5 3 20
$280,000 2,494 2.5 3 20
$225,000 2,208 2.5 4 20
$248,220 2,550 2.5 3 20
$275,000 1,812 2.5 2 20
$137,000 1,290 1 2 20
$150,000 1,172 2 2 20
$649,000 4,128 3.5 3 20
$195,000 1,816 2.5 3 97
$373,200 2,628 2.5 4 20
$169,450 1,254 2.5 3 20
$144,200 1,660 1.5 4 20
$189,900 1,850 1.5 3 20
$166,000 1,258 2 3 20
$160,000 1,219 2 3 20
$327,355 1,850 2.5 3 20
$247,000 2,103 2.5 3 20
$318,000 1,806 2.5 3 20
$341,000 1,674 1.5 2 17
$288,650 2,242 2.5 3 20
$157,000 1,408 1.5 3 20
$449,000 3,457 2.5 3 21
$142,000 1,728 1.5 3 21
$389,000 2,354 2.5 3 21
$476,000 2,246 2.5 3 21
$249,230 1,902 2.5 2 21
$139,900 1,178 1 3 21
$301,900 2,896 3.5 4 21
$425,000 2,457 3 3 41
$121,000 936 1 3 50
$150,000 934 1 2 21
$138,000 1,279 1 3 21
$199,900 1,888 2 3 26
$145,000 1,686 1.5 4 21
$465,000 2,310 3 2 21
$158,000 1,200 1.5 3 21
Prepare a single Microsoft Excel file to document your regression analyses. Prepare a single Microsoft Word document that outlines your responses for each portion of the case study.
data
selling price | sq-feet | no. of bathroom | no. of bedroom | age |
240000 | 2022 | 2.5 | 3 | 20 |
235000 | 1578 | 2 | 3 | 20 |
500075 | 3400 | 3 | 3 | 20 |
240000 | 1744 | 2.5 | 3 | 20 |
270000 | 2560 | 2.5 | 3 | 20 |
225000 | 1398 | 2.5 | 3 | 20 |
280000 | 2494 | 2.5 | 3 | 20 |
225000 | 2208 | 2.5 | 4 | 20 |
248220 | 2550 | 2.5 | 3 | 20 |
275000 | 1812 | 2.5 | 2 | 20 |
137000 | 1290 | 1 | 2 | 20 |
150000 | 1172 | 2 | 2 | 20 |
649000 | 4128 | 3.5 | 3 | 20 |
195000 | 1816 | 2.5 | 3 | 97 |
373200 | 2628 | 2.5 | 4 | 20 |
169450 | 1254 | 2.5 | 3 | 20 |
144200 | 1660 | 1.5 | 4 | 20 |
189900 | 1850 | 1.5 | 3 | 20 |
166000 | 1258 | 2 | 3 | 20 |
160000 | 1219 | 2 | 3 | 20 |
327355 | 1850 | 2.5 | 3 | 20 |
247000 | 2103 | 2.5 | 3 | 20 |
318000 | 1806 | 2.5 | 3 | 20 |
341000 | 1674 | 1.5 | 2 | 17 |
288650 | 2242 | 2.5 | 3 | 20 |
157000 | 1408 | 1.5 | 3 | 20 |
449000 | 3457 | 2.5 | 3 | 21 |
142000 | 1728 | 1.5 | 3 | 21 |
389000 | 2354 | 2.5 | 3 | 21 |
476000 | 2246 | 2.5 | 3 | 21 |
249230 | 1902 | 2.5 | 2 | 21 |
139900 | 1178 | 1 | 3 | 21 |
301900 | 2896 | 3.5 | 4 | 21 |
425000 | 2457 | 3 | 3 | 41 |
121000 | 936 | 1 | 3 | 50 |
150000 | 934 | 1 | 2 | 21 |
138000 | 1279 | 1 | 3 | 21 |
199900 | 1888 | 2 | 3 | 26 |
145000 | 1686 | 1.5 | 4 | 21 |
465000 | 2310 | 3 | 2 | 21 |
158000 | 1200 | 1.5 | 3 | 21 |
a)
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.890990637 | |||||
R Square | 0.793864316 | |||||
Adjusted R Square | 0.770960351 | |||||
Standard Error | 58681.22233 | |||||
Observations | 41 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 4 | 4.77413E+11 | 1.19353E+11 | 34.66056288 | 6.90482E-12 | |
Residual | 36 | 1.23965E+11 | 3443485854 | |||
Total | 40 | 6.01378E+11 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 91934.57151 | 57728.62547 | 1.592530062 | 0.120009481 | -25144.50748 | 209013.6505 |
sq-feet | 129.2855885 | 20.82894503 | 6.207015682 | 3.67893E-07 | 87.04252999 | 171.5286469 |
no. of bathroom | 39969.87177 | 21376.02784 | 1.869845608 | 0.069655054 | -3382.722058 | 83322.4656 |
no. of bedroom | -54284.86462 | 17629.8245 | -3.079149461 | 0.003959575 | -90039.80593 | -18529.92331 |
age | -359.3853607 | 718.6420902 | -0.500089496 | 0.620055382 | -1816.859073 | 1098.088351 |
y^ = 91934.5715 + 129.2856 * sq-feet + 39969.8718 * no.of bathroom -54284.8646*no, of bedroom -359.3854*age
b)
p-value = 6.90482E-12 < 0.05
hence the model is significant
c)
if p-value < alpha
the variable is significant
here sq-feet and no. of bedroom have p-value < 0.05
hence they are significant at 95 % level
d)
apart from sq-feet and no. of bedroom ,no. of bathroom have p-value < 0.10
hence these three are significant at 90% confidence level
e) R^2 = 0.793864316
hence 79.39%