Question

In: Math

Selling Price        Living Area (Sq Feet)       No. Bathrooms No Bedrooms    Age (Years) $240,000            &nbs

Selling Price        Living Area (Sq Feet)       No. Bathrooms No Bedrooms    Age (Years)

$240,000              2,022     2.5          3              20

$235,000              1,578     2              3              20

$500,075              3,400     3              3              20

$240,000              1,744     2.5          3              20

$270,000              2,560     2.5          3              20

$225,000              1,398     2.5          3              20

$280,000              2,494     2.5          3              20

$225,000              2,208     2.5          4              20

$248,220              2,550     2.5          3              20

$275,000              1,812     2.5          2              20

$137,000              1,290     1              2              20

$150,000              1,172     2              2              20

$649,000              4,128     3.5          3              20

$195,000              1,816     2.5          3              97

$373,200              2,628     2.5          4              20

$169,450              1,254     2.5          3              20

$144,200              1,660     1.5          4              20

$189,900              1,850     1.5          3              20

$166,000              1,258     2              3              20

$160,000              1,219     2              3              20

$327,355              1,850     2.5          3              20

$247,000              2,103     2.5          3              20

$318,000              1,806     2.5          3              20

$341,000              1,674     1.5          2              17

$288,650              2,242     2.5          3              20

$157,000              1,408     1.5          3              20

$449,000              3,457     2.5          3              21

$142,000              1,728     1.5          3              21

$389,000              2,354     2.5          3              21

$476,000              2,246     2.5          3              21

$249,230              1,902     2.5          2              21

$139,900              1,178     1              3              21

$301,900              2,896     3.5          4              21

$425,000              2,457     3              3              41

$121,000              936         1              3              50

$150,000              934         1              2              21

$138,000              1,279     1              3              21

$199,900              1,888     2              3              26

$145,000              1,686     1.5          4              21

$465,000              2,310     3              2              21

$158,000              1,200     1.5          3              21

  1.             Develop a multiple linear regression model to predict the price of a house using the square feet of living area, number of bedrooms, number of bathrooms, and age as the predictor variables.
  1.             Write the reqression equation.
  2.             Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence.
  3.              Discuss the statistical significance of the coefficient for each independent variable using the appropriate regression statistics at a 95% level of confidence.
  4.             Discuss the statistical significance of the coefficient for each independent variable using the appropriate regression statistics at a 90% level of confidence.
  1.             Develop a multiple linear regression model to predict the price of a house using the square feet of living area, number of bedrooms, and number of bathrooms as the predictor variables.
  1.             Write the reqression equation.
  2.             Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence.
  3.              Discuss the statistical significance of the coefficient for each independent variable using the appropriate regression statistics at a 95% level of confidence.
  4.             Interpret the coefficient for each independent variable.
  5.             What percentage of the observed variation in housing prices is explained by the model?
  6.              Determine the prediction interval of a house with 3,000 square feet of living area, 3 bedrooms, and 2.5 bathrooms, and comment on the prediction interval.
  1.             In Case Study No.1 you ran a simple linear regression model for predicting the price of a house based upon its living area in square feet using a 95% level of confidence. Rerun that simple linear regression model for predicting the price of a house based upon its living area in square feet using the Case study 2 data using a 95% level of confidence. Compare the regression statistics for this simple linear regression model with the statistics for the preceding multiple linear regression model using square feet of living area, number of bedrooms, and number of bathrooms as the predictor variables. Which model is the preferred model at a 95% level of confidence? Use the Significance F values, p-values for the independent variables, R-squared or Adjusted R-squared values (as appropriate), and standard errors to explain your selection.

Prepare a single Microsoft Excel file to document your regression analyses. Prepare a single Microsoft Word document that outlines your responses for each portion of the case study.

Solutions

Expert Solution

data

selling price sq-feet no. of bathroom no. of bedroom age
240000 2022 2.5 3 20
235000 1578 2 3 20
500075 3400 3 3 20
240000 1744 2.5 3 20
270000 2560 2.5 3 20
225000 1398 2.5 3 20
280000 2494 2.5 3 20
225000 2208 2.5 4 20
248220 2550 2.5 3 20
275000 1812 2.5 2 20
137000 1290 1 2 20
150000 1172 2 2 20
649000 4128 3.5 3 20
195000 1816 2.5 3 97
373200 2628 2.5 4 20
169450 1254 2.5 3 20
144200 1660 1.5 4 20
189900 1850 1.5 3 20
166000 1258 2 3 20
160000 1219 2 3 20
327355 1850 2.5 3 20
247000 2103 2.5 3 20
318000 1806 2.5 3 20
341000 1674 1.5 2 17
288650 2242 2.5 3 20
157000 1408 1.5 3 20
449000 3457 2.5 3 21
142000 1728 1.5 3 21
389000 2354 2.5 3 21
476000 2246 2.5 3 21
249230 1902 2.5 2 21
139900 1178 1 3 21
301900 2896 3.5 4 21
425000 2457 3 3 41
121000 936 1 3 50
150000 934 1 2 21
138000 1279 1 3 21
199900 1888 2 3 26
145000 1686 1.5 4 21
465000 2310 3 2 21
158000 1200 1.5 3 21

a)

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.890990637
R Square 0.793864316
Adjusted R Square 0.770960351
Standard Error 58681.22233
Observations 41
ANOVA
df SS MS F Significance F
Regression 4 4.77413E+11 1.19353E+11 34.66056288 6.90482E-12
Residual 36 1.23965E+11 3443485854
Total 40 6.01378E+11
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 91934.57151 57728.62547 1.592530062 0.120009481 -25144.50748 209013.6505
sq-feet 129.2855885 20.82894503 6.207015682 3.67893E-07 87.04252999 171.5286469
no. of bathroom 39969.87177 21376.02784 1.869845608 0.069655054 -3382.722058 83322.4656
no. of bedroom -54284.86462 17629.8245 -3.079149461 0.003959575 -90039.80593 -18529.92331
age -359.3853607 718.6420902 -0.500089496 0.620055382 -1816.859073 1098.088351

y^ = 91934.5715 + 129.2856 * sq-feet + 39969.8718 * no.of bathroom -54284.8646*no, of bedroom -359.3854*age

b)

p-value = 6.90482E-12 < 0.05

hence the model is significant

c)

if p-value < alpha

the variable is significant

here sq-feet and no. of bedroom have p-value < 0.05

hence they are significant at 95 % level

d)

apart from sq-feet and no. of bedroom ,no. of bathroom have p-value < 0.10

hence these three are significant at 90% confidence level

e) R^2 = 0.793864316

hence 79.39%


Related Solutions

Descriptive Statistic Price Living Area (Square Feet) Number of Bedrooms Number of Bathrooms Age (Years) Mean...
Descriptive Statistic Price Living Area (Square Feet) Number of Bedrooms Number of Bathrooms Age (Years) Mean 160695.775 1733.874 3.136 1.8805 27.871 Standard Error 2132.773719 17.45410352 0.022891658 0.019322088 1.012996802 Median 148829.5 1656 3 2 18 Mode 139079 1480 3 2.5 1 Standard Deviation 67444.22686 551.9472165 0.723897802 0.611018079 32.03377158 Sample Variance 4548723737 304645.7299 0.524028028 0.373343093 1026.162522 Kurtosis 3.889356216 -0.420418335 -0.363359978 -1.004482917 5.291745807 Skewness 1.371395188 0.478357102 0.010298402 0.018867528 2.173487195 Range 552807 2785 4 3 208 Minimum 26049 672 1 1 0 Maximum 578856...
Effects on Selling Price of Houses Square Feet Number of Bedrooms Age Selling Price 1125 2...
Effects on Selling Price of Houses Square Feet Number of Bedrooms Age Selling Price 1125 2 1 121500 1461 3 4 123600 1527 3 8 158100 1719 4 9 214800 1745 4 9 215500 2197 4 11 255000 2414 4 13 257200 28302830 4 14 262200 30153015 5 14 282400 Determine if a statistically significant linear relationship exists between the independent and dependent variables at the 0.01 level of significance. If the relationship is statistically significant, identify the multiple regression...
The following data gives the selling price, square footage, number of bedrooms, and age (in years)...
The following data gives the selling price, square footage, number of bedrooms, and age (in years) of condominiums that were sold in a neighborhood in the Bronx in the past six months             Selling Price Square Footage No. of Bedrooms Age of Condo 64000 1670 2 30 59000 1339 2 25 61500 1712 3 30 79000 1840 3 40 87500 2300 3 18 92500 2234 3 30 95000 2311 3 19 113000 2377 3 7 115000 2736 4 10 138000...
(House Selling Price) The data below show the selling price, square footage, bedrooms, and age of...
(House Selling Price) The data below show the selling price, square footage, bedrooms, and age of houses that have sold in a neighborhood in the last six months. Selling price Square footage Bedrooms Age 64,000 1,670 2 30 59,000 1,339 2 25 61,500 1,712 3 30 79,000 1,840 3 40 87,500 2,300 3 18 92,500 2,234 3 30 95,000 2,311 3 19 113,000 2,377 3 7 115,000 2,736 4 10 138,000 2,500 3 1 142,500 2,500 4 3 144,000 2,479...
The following data gives the selling price, square footage, number of bedrooms, and the age of...
The following data gives the selling price, square footage, number of bedrooms, and the age of a house in years. These houses have been sold in a specific neighborhood over the last six months. Selling Price ($) Square Footage Bedrooms Age (years) 84,000 1,670 2 30 79,000 1,339 2 25 91,500 1,712 3 30 120,000 1,840 3 40 127,500 2,300 3 18 132,500 2,234 3 30 145,000 2,311 3 19 164,000 2,377 3 7 155,000 2,736 4 10 168,000 2,500...
Price (thousands of $) Size (sq. ft.) # of Bedrooms # of Baths Distance to Town...
Price (thousands of $) Size (sq. ft.) # of Bedrooms # of Baths Distance to Town Center Garage Dummy (1=garage; 0=no garage) Pool Dummy (1=pool; 0=no pool) 271.8 2100 2 2.5 9 1 0 221.1 2300 3 1.5 18 0 1 266.6 2400 4 2 13 1 0 292.4 2100 4 2 14 1 0 209 1700 2 1.5 8 1 0 270.8 2500 6 2 7 1 0 246.1 2100 4 2 18 1 0 194.4 2300 2 2...
The data relating the square feet for the living space and the selling price of 12...
The data relating the square feet for the living space and the selling price of 12 residential properties given in example 3.5 are reproduced here. X Y 1360 178.5 1940 275.7 1750 239.5 1550 229.8 1790 195.6 1750 210.3 2230 360.5 1600 205.2 1450 188.6 1870 265.7 2210 325.3 1480 168.8 What is the y-intercept of the best fitting line? 1. -106.6 2. 0.196 3. -0.196 4. 106.6
The data relating the square feet for the living space and the selling price of 12...
The data relating the square feet for the living space and the selling price of 12 residential properties given in example 3.5 are reproduced here. X Y 1360 178.5 1940 275.7 1750 239.5 1550 229.8 1790 195.6 1750 210.3 2230 360.5 1600 205.2 1450 188.6 1870 265.7 2210 325.3 1480 168.8 What is the y-intercept of the best fitting line? 1. -106.6 2. 0.196 3. -0.196 4. 106.6
2) The following data gives the selling price, square footage, number of bedrooms, and the age...
2) The following data gives the selling price, square footage, number of bedrooms, and the age of a house in years. These houses have been sold in a specific neighborhood over the last six months. Selling Price ($) Square Footage Bedrooms Age (years) 84,000 1,670 2 30 79,000 1,339 2 25 91,500 1,712 3 30 120,000 1,840 3 40 127,500 2,300 3 18 132,500 2,234 3 30 145,000 2,311 3 19 164,000 2,377 3 7 155,000 2,736 4 10 168,000...
The following data give the selling price, square footage, number of bedrooms, and age of houses...
The following data give the selling price, square footage, number of bedrooms, and age of houses that have sold in a neighborhood in the past 6 months. Develop three regression models to predict the selling price based upon each of the other factors individually. Which of these is best? use 1 for yes and 0 for no develop a regression model to predict selling price based on the square footage and number of bedrooms. Use this to predict the selling...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT